范文范本不仅是一种学习工具,也是一种检验自己写作水平和提高自身能力的方法。写一篇好的总结需要积累经验和不断学习,以下范文可供您参考和借鉴。
小学数学知识归纳与总结(实用19篇)篇一
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.
考点3:相似三角形的概念。
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
考点4:相似三角形的判定和性质及其应用。
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.
考点5:三角形的重心。
考核要求:知道重心的定义并初步应用.
考点6:向量的有关概念。
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。
考核要求:掌握实数与向量相乘、向量的线性运算。
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考点9:解直角三角形及其应用。
考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形.
考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义.
考点11:用待定系数法求二次函数的解析式。
考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法.
注意求函数解析式的步骤:一设、二代、三列、四还原.
考点12:画二次函数的图像。
考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像.
考点13:二次函数的图像及其基本性质。
考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质.
注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.
考点14:圆心角、弦、弦心距的概念。
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断.
考点15:圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.
考点16:垂径定理及其推论。
垂径定理及其推论是圆这一板块中最重要的知识点之一.
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.
考点18:正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.
考点19:画正三、四、六边形.
考核要求:能用基本作图工具,正确作出正三、四、六边形.
考点20:确定事件和随机事件。
考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件.
考点21:事件发生的可能性大小,事件的概率。
考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率.注意:(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确.
考点22:等可能试验中事件的概率问题及概率计算。
本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.
在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整.
考点23:数据整理与统计图表。
本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息.
考点24:统计的含义。
本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法.
考点25:平均数、加权平均数的概念和计算。
本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式.注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率.
考点26:中位数、众数、方差、标准差的概念和计算。
考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题.
注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序.
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。
考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题.解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1.
考点28:中位数、众数、方差、标准差、频数、频率的应用。
本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决.
小学数学知识归纳与总结(实用19篇)篇二
(1)两位数加、减两位数。?两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。?乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。?数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。?加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。?先乘除后加减。两步计算式题。小括号。
(二)量与计量。
时、分、秒的认识。
米、分米、厘米的认识和简单计算。
千克(公斤)的认识。
(三)几何初步知识。
直线和线段的初步认识。?角的初步认识。直角。
(四)应用题。
加法和减法一步计算的应用题。?乘法和除法一步计算的应用题。?比较容易的两步计算的应用题。
(五)实践活动。
与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
小学数学知识归纳与总结(实用19篇)篇三
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3 弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4 圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5 点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的`三条边的垂直平分线的交点,叫做三角形的外心。
6直线和圆的位置关系
相交 d
相切 d=r
相离 dr
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7 圆和圆的位置关系
外离 dr+r
外切 d=r+r
相交 r-r
内切 d=r-r
内含 d
8 正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9 弧长和扇形面积
弧长
扇形面积:
10 圆锥的侧面积和全面积
侧面积:
全面积
11 (附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件a发生的频率 稳定在某个常数p附近,则常数p叫做事件a的概率。
2 用列举法求概率
3 用频率去估计概率
小学数学知识归纳与总结(实用19篇)篇四
(1)20以内数的认识。加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合运算。
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。
两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二)量与计量钟面的认识(整时)。人民币的认识和简单计算。
(三)几何初步知识。
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题。
比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)。
(五)实践活动。
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
小学数学知识归纳与总结(实用19篇)篇五
0.2表示十分之二,0.02表示百分之二。
【小数的计数单位】小数的计数单位是十分之一,百分之一,千分之一......分别写作0.1,0.01,0.001......
【小数加法】小数加法的意义与整数加法的意义相同,是把两个数合并成一个数的运算。
【小数减法】小数减法的意义与整数减法的意义相同,是已知2个加数的和与其中一个加数,求另一个加数的运算。
【小数乘整数】小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
【一个数乘小数】一个数乘小数的意义是求这个数的十分之几,百分之几,千分之几......
【小数除法】小数除法的意义和整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。
【循环小数】一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
【循环节】一个循环小数的小数部分,依次不断地重复出现的数字,叫做这个循环小数的循环节。
【纯循环小数】循环节从小数部分第一位开始的,叫做纯循环小数。
【混循环小数】循环节不从小数部分第一位开始的,叫做混循环小数。
【有限小数】小数部分的位数是有限的小数,叫做有限小数。
【无限小数】小数部分的位数是无限的小数,叫做无限小数。循环小数是无限小数。
【小数的性质】小数的末尾添上0或者去掉0,小数的大小不变,这叫做小数的性质。
【小数加减法的计算法则】计算小数加减法,先把各数的小数点对起,再按照整数加减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。得数的小数部分末尾有0,一般要把0去掉。
【小数乘法的计算法则】计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边数出几位,点上小数点。
【除数是整数的小数除法法则】除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
【除数是小数的小数除法法则】除数是小数的除法,先移动除数的小数点,使它变整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算。
【小数的读法】读小数的时候,整数部分按照整数的读法来读,(整数部分是“0”的读作“零”),小数点读作“点”,小数部分通常顺次读出每一个数位上的数字。
【小数的写法】写小数的时候,整数部分按照整数的写法来写(整数部分是零的写做数字“0”),小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
【小数性质的应用】(1)根据小数的性质,遇到小数末尾有“0”的时候,一般地可以去掉末尾“0”,把小数化简。(2)有时根据需要,可以在小数的末尾添上“0”,还可以在整数的个位和右下角点上小数点,再添上0,把整数写成小数形式。
小学数学知识归纳与总结(实用19篇)篇六
(1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。
(3)四则混合运算。两步计算的式题。小括号的使用。
(4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。
(二)量与计量千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。
(三)几何初步知识长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。
(四)应用题常见的数量关系。解答两步计算的应用题。
(五)实践活动联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
小学数学知识归纳与总结(实用19篇)篇七
1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。
2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。
4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。
5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。
6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。
小学数学知识归纳与总结(实用19篇)篇八
【分数线】在分数里,中间的横线叫做分数线。
【分母】在分数里,分数线下面的数叫做分母,表示把单位“1”平均分成多少份。
【分子】在分数里,分数线上面的数叫做分子,表示有这样的多少份。
【分数单位】按照分母数字把单位“1”分成相等份数,表示其中一份的数,叫做分数单位。例如六分之五的分数单位是六分之一。
【真分数】分子比分母小的分数叫做真分数。真分数小于1。
【假分数】分子比分母大或者分子和分母相等的分数,叫做假分数。
【繁分数】一个分数,如果它的分子含有分数或者分母里含有分数,或者分子和分母里都含有分数,这个分数就叫做繁分数。
【带分数】由整数和真分数合成的数,通常叫做带分数。例如二又五分之一。
【约分】把一个分数化成同他相等,但分子和分母都比较小的分数,叫做约分。
【最简分数】分子和分母是互质数的分数叫做最简分数。
【通分】把两个异分母分数分别化成和原来分数相等的同分母分数,叫做通分。例如比较两个分数的大小,就需要通分。
【分数加法】分数加法的意义与整数加法的意义相同,是把两个分数合并成一个分数的运算。
【分数减法】分数减法的意义与整数减法的意义相同,是已知两个加数的和与其中一个加数,求另一个加数的运算。
【分数乘整数】分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
【一个数乘分数】一个数乘分数的意义,就是求这个数的几分之几是多少。
【倒数】乘积是1的两个数叫做互为倒数。例如八分之三和三分之八互为倒数,就是八分之三的倒数是三分之八。
【分数除法】分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
【分数的基本性质】分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。
【同分母分数加减法的法则】同分母分数相加减,分母不变,只把分子相加减。计算结果能约分的要约成最简分数,是假分数的,一般要化成带分数或整数。
小学数学知识归纳与总结(实用19篇)篇九
(1)亿以内数的读法和写法。
计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。
加法,减法。
接近整十、整百数的加、减法的简便算法。
加、减法算式中各部分之间的关系。求未知数x。
(3)乘、除数是三位数的乘、除法。
乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。
_乘、除计算的简单估算。
乘数接近整十、整百的简便算法。
乘、除法算式中各部分之间的关系。求未知数x。
(4)四则混合运算。
中括号。三步计算的式题。
(5)整数及其四则运算的关系和运算定律。
自然数与整数。十进制计数法。读法和写法。
四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。
运算定律。简便运算。
(6)小数的意义、性质,加法和减法。
小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值。
加法和减法。加法运算定律推广到小数。
(注:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级)。
(二)量与计量。
年、月、日。平年、闰年。世纪。24时计时法。
角的度量。
面积单位。
(三)几何初步知识。
直线的测定。测量距离(工具测、步测、目测)。
射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。
三角形的特征。_三角形的内角和。
(四)统计初步知识。
简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。
(五)应用题列综合算式解答比较容易的三步计算的应用题。
小学数学知识归纳与总结(实用19篇)篇十
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少。
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
1、认识上、下。
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后。
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右。
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
一、1——5的认识。
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序。
从前往后数:1、2、3、4、5。
从后往前数:5、4、3、2、1。
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小。
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“”表示,即32,读作3大于2。前面的数小于后面的数,用“”表示,即34,读作3小于4。
2、填“”或“”时,开口对大数,尖角对小数。
三、第几。
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的.一个物体。
四、分与合。
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1。
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法。
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法。
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0。
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零。
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0。
如:0+8=8、9-0=9、4-4=0。
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法。
1、10以内加减法的计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减。
1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合。
加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
1、数数:根据物体的个数,可以用11—20各数来表示。
3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2。有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法。
(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题。
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
1、认识钟面。
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00。
1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
2、8、7、6加几的计算方法:
(1)点数;。
(2)接着数;。
(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。
3、5、4、3、2加几的计算方法:
(1)“拆大数、凑小数”。
(2)“拆小数、凑大数”。
4、解决问题。
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
小学数学知识归纳与总结(实用19篇)篇十一
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理。
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念。
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用。
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心。
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念。
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。
考核要求:掌握实数与向量相乘、向量的线性运算。
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9:解直角三角形及其应用。
考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点10:函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数。
考核要求:(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的表示方法,知道符号的意义。
考点11:用待定系数法求二次函数的解析式。
考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12:画二次函数的图像。
考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)会画二次函数的大致图像。
考点13:二次函数的图像及其基本性质。
考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式。
考点14:圆心角、弦、弦心距的概念。
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15:圆心角、弧、弦、弦心距之间的关系。
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16:垂径定理及其推论。
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系。
直线与圆的位置关系可从与之间的关系和交点的.个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18:正多边形的有关概念和基本性质。
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19:画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点20:确定事件和随机事件。
考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21:事件发生的可能性大小,事件的概率。
考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。注意:(1)在给可能性的大小排序前可先用"一定发生"、"很有可能发生"、"可能发生"、"不太可能发生"、"一定不会发生"等词语来表述事件发生的可能性的大小;(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22:等可能试验中事件的概率问题及概率计算。
本考点的考核要求是(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画"树形图"方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画"树形图"方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23:数据整理与统计图表。
本考点考核要求是:(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24:统计的含义。
本考点的考核要求是:(1)知道统计的意义和一般研究过程;(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25:平均数、加权平均数的概念和计算。
本考点的考核要是:(1)理解平均数、加权平均数的概念;(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26:中位数、众数、方差、标准差的概念和计算。
考核要求:(1)知道中位数、众数、方差、标准差的概念;(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;(2)求中位数之前必须先将数据排序。
考点27:频数、频率的意义,画频数分布直方图和频率分布直方图。
考核要求:(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28:中位数、众数、方差、标准差、频数、频率的应用。
本考点的考核要是:(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
小学数学知识归纳与总结(实用19篇)篇十二
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例。
比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三)几何初步知识。
圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。
(四)统计初步知识。
统计表。条形统计图,折线统计图,_扇形统计图。
(五)应用题。
分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动。
联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。
(七)整理和复习。
小学数学知识归纳与总结(实用19篇)篇十三
(一)“大数的认识”:
1.知识技能目标:巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。
(2)多位数的读写法的方法是什么?
(3)改写和省略的方法是什么?
(4)如何比较数的大小?
3.对应练习。
(1)读出下面各数。
62315797005008239804000001000400070。
4003000023674001000061540000030708000000。
(2)写出下面各数。
四千零二万一百零三二千零四十万四千零三十。
一十亿零五百六十八一百二十亿四千零八万五千零四十。
(3)改写成以亿做单位的数:224100000000212000000000。
(4)求近似数。
265805602527641880808(省略万后面的'尾数)。
34564631071233547811220805658(省略亿后面的尾数)。
(5)用1、5、7、9和4个0按要求写出八位数。
最大的数(),最小的数是(),一个0都不读的数,只读出一个0的数(),要读出2个0的数()。
(二)“乘除法”复习。
1.知识技能目标:通过复习,巩固所学的乘除法口算和笔算的计算方法,在计算过程中能灵活应用因数和积的关系、商变化的规律,正确熟练地计算。
2.复习知识点:
(1)复习口算。
230×4=3×380=150×4=108×3=。
350×2=70×5=2700÷30=1800÷60=。
360÷90=2400÷60=8000÷40=4200÷60=。
(2)不计算,直接写出下面的积。
16×392=6272160×392=16×3920=。
792÷24=33396÷12=1584÷48=。
想一想,你是根据什么得出结果的?(积的变化规律和商的变换规律)。
(3)笔算。
145×37=540×18=508×60=509×57=。
948÷19=676÷64=516÷43=338÷13=。
小学数学知识归纳与总结(实用19篇)篇十四
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。
练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。
俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。
6.勇于“辩”的习惯。
讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。
小学数学知识归纳与总结(实用19篇)篇十五
1.课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)。
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2.重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数。
难点:函数、圆锥曲线。
小学数学知识归纳与总结(实用19篇)篇十六
动点的轨迹方程动点的轨迹方程:
在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:
直接法、定义法、相关点法、参数法、交轨法等。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
动点所满足的条件不易表述或求出,但形成轨迹的动点p(x,y)却随另一动点q(x′,y′)的运动而有规律的运动,且动点q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入q的轨迹方程,然而整理得p的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为m(x,y);
(2)写集合写出符合条件p的点m的集合p(m);
(3)列式用坐标表示p(m),列出方程f(x,y)=0;
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点,
小学数学知识归纳与总结(实用19篇)篇十七
高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
数列这个板块,重点考两个方面:一个通项;一个是求和。
空间向量和立体几何。在里面重点考察两个方面:一个是证明;一个是计算。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一等可能的概率,第二事件,第三是独立事件,还有独立重复事件发生的概率。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
小学数学知识归纳与总结(实用19篇)篇十八
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。
对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。
在临近高考的数学复习中,考生们更应该从三个层面上整体把握,同步推进。
1.知识层面
也就是对每个章节、每个知识点的再认识、再记忆、再应用。数学高考内容选修加必修,可归纳为12个章节,75个知识点细化为160个小知识点,而这些知识点又是纵横交错,互相关联,是“你中有我,我中有你”的。考生们在清理这些知识点时,首先是点点必记,不可遗漏。再是建立相关联的网络,做到取自一点,连成一线,使之横竖纵横都逐个、逐级并网连遍,从而牢固记忆、灵活运用。
2.能力层面
从知识点的掌握到解题能力的形成,是综合,更是飞跃,将知识点的内容转化为高强的数学能力,这要通过大量练习,通过大脑思维、再思维,从而沉淀而得到数学思想的精华,就是数学解题能力。我们通常说的解题能力、计算能力、转化问题的能力、阅读理解题意的能力等等,都来自于千锤百炼的解题之中。
3.创新层面
数学解题要创新,首先是思想创新,我们称之为“函数的思想”、“讨论的方法”。函数是高中数学的主线,我们可以用函数的思想去分析一切数学问题,从初等数学到高等数学、从图形问题到运算问题、从高散型到连续型、从指数与对数、从微分与积分等等,这一切都要突出函数的思想;另外,现在的高考题常常用增加题目中参数的方法来提高题目的难度,用于区别学生之间解题能力的差异。我们常常应对参数的策略点是消去参数,化未知为已知;或讨论参数,分类找出参数的含义;或分离参数,将参数问题化成函数问题,使问题迎刃而解。这些,我称之为解题创新之举。
4.代换层面
还有一类数学解题中的创新,是代换,构造新函数新图形等等,俗称代换法、构造法,这里有更大的思维跨越,在解题的某一阶段有时出现山穷水尽,无计可施时,用代换与构造,就会使思路豁然开朗、柳暗花明、思路顺畅、解答优美,体现数学之美。常见的代换有变量代换,三角代换,整体代换;常用的构造有构造函数、构造图形、构造数列、构造不等式、构造相关模型等等。
1.“方程”思想
数学是研究事物的空间形式和数量关系。初中阶段最重要的数量关系是平等关系,其次是不平等关系。最常见的等价关系是“方程”。例如,在等速运动中,距离、速度和时间之间存在等价关系,可以建立相关方程:速度时间=距离。在这样的方程中,通常会有已知的量和未知量。含有这种未知量的方程是“方程”,它可以从方程中已知的量导出。未知量的过程是求解方程的过程。我们在小学时接触过简单的方程,而在初中第一年,我们系统地学习解一变量的第一个方程,并总结出解一变量的第一个方程的五个步骤。如果我们学习并掌握这五个步骤,任何一个等式都能顺利地解决。在2年级和3年级,我们还将学习解决二次方程、二次方程和简单三角方程。在高中,我们还学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。求解这些方程的思想几乎是相同的。通过一些方法,将它们转化为一元一阶方程或一元二次方程的形式,然后通过求解一元一阶方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化学中的化学平衡方程以及大量实际应用都需要建立方程和求解方程才能得到结果。因此,学生必须学会如何解一维一阶方程和一维二阶方程,然后才能学好其他形式的方程。
所谓的“方程”思想是数学问题,特别是未知现实见面和已知数量的复杂关系,善于利用“方程”的观点建立相关方程,然后利用求解方程的方法来解决这个问题。
2.“数与形相结合”的思想
数字和形状在世界各地随处可见。任何东西,除去它的定性方面,都是留给数学研究的,只有形状和尺寸的属性。代数和几何是初中数学的两个分支。然而,代数的研究依赖于“形式”,而几何学则依赖于“数”,而“数与形的结合”则是一种趋势。我们学得越多,“数字”和“形状”就越不可分割,在高中时,“数字”和“形状”是密不可分的。有一门关于用代数方法研究几何问题的课程,叫做“分析几何”。第三年,平面笛卡尔坐标系建立后,函数的研究就离不开图像。通过图像的帮助,很容易找到问题的关键点,解决问题。在今后的数学学习中,应重视“数与形相结合”的思维训练。只要任何问题都与“形状”有关,就应该根据主题的含义起草一个草图来分析它。这样做不仅是直观的,而且是全面的。诚信强,容易找到切入点,对解决问题有很大的益处。品尝甜味的人会逐渐养成“数形结合”的好习惯。
1.按部就班
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2.强调理解
概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3.基本训练
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4.重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
小学数学知识归纳与总结(实用19篇)篇十九
1、直接解题法(直接法)。
直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的答案。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2、特殊值解题。
正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速地解。
3、数形结合法或者割补法(解析几何常用方法):
巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。对于一些具有几何背景的数学问题,如能构造出与之相应的图形进行分析,往往能在数形结合、以形助数中获得形象直观的解法。
4、极限法。
这是高中选修部分,不过用在解题会很快。极限思想是一种基本而重要的数学思想。当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限思想思考,则往往可使过程简单明快。用极限法是解选择题的一种有效方法。它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到答案。