每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
人教版乘法交换律结合律教学反思律教学反思四年级篇一
这部分的教学内容是在学习了加法的运算定律及其相关简便运算后学习的。由于学生已经掌握了加法交换律和加法结合律,因此在教学过程中,利用知识的迁移规律来学习乘法交换律和结合律。
首先,先学后教。让学生根据教师的提纲,进行例5和例6的预习。预习的过程中,让学生把学会的知识记录下来,把没有理解的知识圈出来。预习之后进行小组交流,把学到的知识进行小组内交流,实现知识的共享。
其次,师生共探讨。
1、首先交流在预习中学到的知识,为同学们解惑。
2、师出示检测题目,检查孩子学的预习情况:
(1)、检测练习:
25×8=×25125×14×8=()×()×14
4×(25×7)=(×)×72×5×8×50=(×)×(×)
(2)、乘法交换律:用自己的话说一说,或用字母或符号表示一下。
乘法结合律:用自己的话说一说,或用字母或符号表示一下。
根据检测过程中出现的问题老师进行讲解。
整个的教学过程,把学习的主动权充分的让给学生,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的.数学知识与技能、数学思想和方法,获得广泛的数学活动经验,整个的课堂教学氛围比较活跃,学生的参与性高,知识学的也不错,但是对于乘法结合律的应用,不够灵活,需要加强一些题型的练习。
人教版乘法交换律结合律教学反思律教学反思四年级篇二
上完这节课后,我的感触很深,我对这节课值得反思的东西还是挺多的。通过本节课的.学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历做数学的过程。首先我在通过复习加法运算定律引入课题,然后让学生读图根据已知条件提出问题,对问题解答。这里的每个问题都可以列出两个不同的算式,因为是对同一问题的解答所以学生能够理解把这两个算式写成一个等式。之后让学生观察这个等式。提出问题这个等式有什么特点让学生思考,课后我觉得这个问题提的不是很清楚,如果问等式的左右两有什么异同学生也许会更容易的发现这一规律。
各个环节的衔接不是很紧凑,本来后面还安排了两道应用题,但由于时间关系没来得及做。
人教版乘法交换律结合律教学反思律教学反思四年级篇三
教学内容:
第61至62页例题,试一试,想想做做的第1至5题。
教学目标:
1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握乘法交换律和乘法结合律,并能用这两个运算律进行一些简便运算。
2、在学习新知识的过程中,培养学生新旧知识间的迁移能力,在解决问题的过程中,培养学生灵活选择和应用乘法交换律和乘法结合律的能力。
3、培养学生积极交流、认真倾听的习惯。
教学重点:
理解并掌握乘法交换律和乘法结合律并能用这两个运算律进行一些简便运算。
教学难点:
灵活应用乘法交换律和乘法结合律,正确计算。
教学过程:
一、复习旧知:
学生猜测,取名字。(板书其中的一些猜测)
二、举例验证:
你能否找一些实际例子来证明你的观点?
(可以用数字举例,也可以用生活中的例子。)
那找一个例子说明刚才的结论错误的呢?
你们找到反而的例子了吗?你们没找到,老师也没找到,那么我们到书上找找答案。
三:自学课本:
自学书本第61.、62页。
说说你们自学后有什么想说的吗?
等式怎么填?
这样填的'依据是什么?
在乘法结合律中,等号两边的算式,有什么相同和不同?
你能不能用一句两句话概括一下乘法结合律和乘法交换律?
试一试。
(学生自己练习,请两个学生板演)
四、巩固练习:
1、想想做做第1题。
学生在书上填空,思考各题分别用了什么规律。
集体交流。
2、想想做做第2题。
算一算。
比一比,每组中哪道算式的计算算得快,为什么?
3、想想做做第3题。
4、想想做做第5题。
用不同算式求出苹果
和梨各有多少千克。
学生自己练习,指名板演。
集体交流。
五、全课小结:
这节课你有什么收获?
六、课堂作业:
第62想想做做的第4题。
反思:
作为一节探索数学的规律课,对于乘法交换律与结合律的教学,不应仅仅满足于学生理解、掌握乘法交换律与结合律,会运用乘法交换律与结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这是一个教学的重点,也是难点。
本课让学生自己根据加法结合和交换律来寻找乘法运算定律,通过验证猜想得到并发现了乘法交换律与结合律,从教学素材的选择上充分体现了以“学生为主体”的课堂教学观,教师真正在教学设计中把探索权力放给了学生,学生列举算式例子空间很大,发现验证了这两个规律,体现了“以学生为本”充分尊重了学生个性,并积极引导学生展开探究,把思维的空间留给学生,教师基本上是学生探究知识的参谋与协助者,学生主体地位得到充分体现。同时也节省了教学时间,这样使我们的课堂教学更有效。
人教版乘法交换律结合律教学反思律教学反思四年级篇四
在加法运算律教学时,学生对这块知识不感兴趣,有部分学生学习过此类知识,认为自己已经学习过了,掌握了,可是作业做下来并不理想。如让学生根据算式判断用的是什么运算律,部分学生判断还不准确,只知道有些题目怎么做并不知道为什么是这样做?于是我把两课时的教学改成了三课时,重新梳理知识。
在学习乘法运算律时,我让学生自己先说说你认为乘法会有什么样的运算律?不管是已经学习过的还是其他学生(有加法运算律的基础)都能说出乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)。看学生得意的表情,我问了一句:“那你知道为什么是a×b=b×a和(a×b)×c=a×(b×c)吗?”学生一个个的说理由,生1:“因为交换两个乘数的位置,它们的积不变。”生2:“因为只是交换了两个乘数的位置,这两个乘数并没有发生改变,所以积不变。”再喊了几名学生理由都是差不多的,这时班上陈某某发言了,他说:“我把a看成1,b看成0,那么1乘0得0,交换位置后0乘1还是得0,所以a×b=b×a。”没想到他的发言竟然引起了全班的哄堂大笑,他不好意思的坐下去了。可是我却做了一个和大家不一样的举动,我大声的说了一句:“非常好!”其他学生有点闹不明白了,一个个看着我……“他用举例的的方法证明了这个运算律是对的。其实在我们的数学学习过程中,经常在一系列的题目中发现一些对这类题目的规律,我们就可以总结归纳,有些总结出来的对所有的此类的题目都适用,有些对一些题目适用。以后在我们的数学学习中要学会观察,找到规律,总结方法。陈某某虽然没有总结规律,可是他用举例的方法从另一个方面来证明也是很了不起的。”我的一番话说的他很不好意思,可能我的话有很多学生都听不懂,但我就是想以此例告诉学生不仅要“知其然”而且要“知其所以然”。有一名学生根据前面学习加法时遇到的用加法交换律检验,想到了用以前学习乘法计算时的验算,交换乘数的位置再算一遍后得到的积是一样的来证明规律的存在。
课本中让学生在解决具体的情境中数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变,再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律,并用字母表示。乘法结合律的编排和加法结合律的相似,引导学生经过小组讨论发现规律。如果此课是在我以前教学,可能就如教材安排的学生经历这一系列的探索,发现规律,然后让学生通过试一试巩固规律,特别是让学生用自己喜欢的方式去表达规律时,学生可能想到很多不一样的自己喜欢的方式,可是在这边的教学一点点都没有实现,因为大部分学生已经知道了用a和b的形式来表示。可是我在教学加法运算律时,按照我预设的上课,活动没有开展起来,课后我反思,是我没有考虑学生的实际情况,这边的学生在课前有多种途径去在上课之前接受知识,不管是主动还是被动,大部分学生都已经被灌输了a×b=b×a等等之类的知识。学生在上课时就认为自己已经懂了,不用听了;而在以前的学校,学生没有这么多途径,对于他们来说书上的知识就时新知识,他们知识的获得除了课前自己预习外,更多是在课堂上去探索,所以他们课堂上注意力集中,对规律的探索有更多的兴趣,更能经历知识的形成和发展的过程。
在上课时因为学生的特殊情况,在总结出规律后,针对学生的掌握情况,我没有出现试一试,而是直接出现两道题目让学生去进行比赛,(15×17×2和17×(15×2))让学生观察后任选一题进行,看看谁做的快?大部分学生选了第2题,有个别学生选第一题但也用了运算律简便计算。比赛完毕,我让学生汇报,问为什么你会选第一题,体会到把15和2相乘的优越性。
人教版乘法交换律结合律教学反思律教学反思四年级篇五
本节课的主要内容是经历探索乘法交换律、乘法结合律的过程,理解并用字母表示乘法交换律、结合律,能运用乘法交换律、结合律进行简便运算。教学重点是经历探索乘法交换律、乘法结合律的过程;难点是能运用乘法交换律、结合律进行简便运算。
上完这节课后,我的感触很深,我对这节课值得反思的东西还是挺多的。通过本节课的学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。首先我在通过复习加法运算定律引入课题,然后让学生读图根据已知条件提出问题,对问题解答。这里的每个问题都可以列出两个不同的算式,因为是对同一问题的解答所以学生能够理解把这两个算式写成一个等式。之后让学生观察这个等式。提出问题“这个等式有什么特点”让学生思考,课后我觉得这个问题提的不是很清楚,如果问“等式的左右两有什么异同”学生也许会更容易的发现这一规律。
课前备课时,我觉得这两个定律都很简单,学生能够自己发现规律,现在想一想,我可以在讲乘法交换律时,让学生自己观察,而第二个乘法结合律稍有一点难度,可以采用小组讨论的形式解决问题。
各个环节的衔接不是很紧凑,本来后面还安排了两道应用题,但由于时间关系没来得及做。