在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
平行四边形的判定教学反思篇一
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
平行四边形的判定教学反思篇二
在数学教学中,要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?正方形的呢?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所觉。
3.分层练习,突破重点难点
巩固练习阶段是帮助学生掌握新知,形成技能、发展智力、培养能力的重要手段。心理实验证明:学生经过近三十分钟的紧张学习之后,注意力已经度过了最佳时期。此时,学生易疲劳,学习兴趣容易降低,差生的表现尤为明显。为了保持较好的学习状态,提高学生的练习兴趣,我除了注意练习的目的性、典型性、层次性和针对性以外,还特别注意在巩固新知识的基础上进行加强练习。选择合适的底和高计算面积、已知面积求高(逆向思维训练)、等底等高图形面积计算。
在学生初步掌握平行四边形面积计算公式的基础上,又设计了一组选择练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。这样,既体现了知识的有序性,又保证了重点,分散难点,便于学生理解与掌握,从而达到学习目标的全面落实。学生兴趣浓厚,攻克一个个难关,意犹未尽。,学生练习中错误率低,取得了满意的效果。时间把握得不够,最后两道有针对性的练习没有得到训练,从而没有很好的达到巩固新知的作用。
4.我的遗憾
本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了,学生对平行四边形面积推导过程茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的判定教学反思篇三
平行四边形在日常生活中随处可见,应用也很广泛,学生在小学已经学习过平行四边形,但小学阶段学生只认识平行四边形的概念,没有涉及平行四边形的定义、表示、性质和判定等。学习了平行四边的性质和判定给我很大的启发和帮助,下面说说我的感受:
从学生已有的认识和经验出发,让学生通过剪、拼两个全等的三角形,得到了一个平行四边形开始动手探究,让学生亲自经历观察、操作、想象、推理与交流等数学活动。教师必须在备课时充分考虑到并为学生提供了很多很好的素材,给学生思考、探究、交流的时间和空间,使学生顺利完成探究活动。让学生在动手的过程中,培养学生爱学习数学的思想理念。
在探究平行四边形的对角相等、对边相等、对角线互相平分等性质时,老师必须有意识地让学生进行有条理的思考,有规范的表达和交流。无形中引导学生在活动中自觉地思考,自觉地用语言说明操作的过程,养成说理有据的习惯。在中学的教学中更注重抽象思维,初中的这部分教学需要对所思考的过程进行整理分析,进行简单的逻辑推理,这就需要我们初中教师注重从中学的直观几何过渡到论证几何,从简单图形的计算过渡到推理证明。
不同的学生由于数学的知识和积累的经验不同,他们的认知方式与思维方法也有差异性。教师必须注意这一点,在教学设计要预先设置好多样化的问题,不同层次的问题,针对不同层次的学生,让他们都有参入到学习当中去,尊重学生解决问题有不同的水平。
教师要做好中学与小学教学的衔接:
(1)教师首先应该有意识的多了解小学的教学,多了解学生的认知水平和思维能力,这样才能真正做好备教材、备学生。
(2)充分利用素材,通过一些有趣的例子展现数学的真实性,经历操作的过程,体会推理的必要性。
(3)教师在平时的教学中要做好榜样作用,注重直观操作与推理说明相结合,多使用规范化的数学语言,板演规范化,让学生多接触规范化的数学语言。
平行四边形的判定教学反思篇四
《平行四边形的面积》是北师大版五年级上册第四单元第三课时的内容。这在学生已经会在格子图中求出图形的面积,已经认识了平行四边形的底和高,并会找、会画相对应的底和高的基础上进行教学的,基于学生的知识起点和学生的学情分析,我有了本课的教学设计。我追求的是让教学贴着学生的思维前行,让学生在直观操作中学习数学。今天,我有幸将这课的设计在早毓小学展示。现静下心来反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
首先,我对教科书中的主情境加以修改,以贴近学生的生活情景导入,利用课件出现学校操场旁有一块长方形的空地要绿化,请同学们算出绿化的面积,随即从这个长方形中出现一块没有任何数据的平行四边形地,再引导学生将这个平行四边形与长方形比一比,再估测这个平行四边形的面积大约有多少?以培养学生估测意识。
继而询问学生“有什么办法能比较准确地算出这个平行四边形的面积”。学生根据已有的学习经验马上想到用数格子和计算的的方法。然后围绕“有什么办法能比较准确算出这个平行四边形的面积?”组织学生动手探究。这样既复习了旧有知识,又为学习新知识做铺垫,同时也比较自然地引入新内容。
1.《新课程标准》明确指出:“有效地数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”动手实践是学生学习数学的主要方式之一。它有利于让学生参与知识的形成过程,促进学生对抽象数学知识的理解,而且培养了学生的思维能力、创新能力和合作精神。因此,在本课的教学设计中,我利用学生好动、好奇的心理,将这块平行四边形做成卡片模型,并提供了一些探究的材料和工具。让学生根据自己的学习经验,自主选用喜欢的方法来验证自己的猜想。为学生创造了一个观察、操作的机会,以充分发挥学生的学习主动性,学生在兴趣盎然的操作中,把抽象的数学知识变为活生生的的动作,自然而然的让学生从“要我学”变成“我要学”。有的学生根据自己的学习经验想到了数格子的方法;能力较好的学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。
2.“学生是学习的主人,把课堂的时间交还给学习的主人”这是新课标在提倡的重点。是的,学生学习,教师是不能替代的,只有让学生在动手操作和交流地碰撞中。学生才能真正理解和掌握这种抽象的公式。因此,在展示学生的活动方法时,我有意识地先展示数格子的方法,当学生介绍完数法后,有的学生马上发现,先移后数的方法更快的得到这个平行四边形的面积,其实,在这里,学生已初步体验的“剪”和“拼”方法了。所以我紧接着展示学生的剪拼法。在学生的汇报中,我大胆放手,让学生根据自己的学习经验进行汇报,充分发挥学生的想象力,同时培养学生的创新意识。
“授人以鱼,不如授人以渔”,这句话不错,教给他们知识,不如教给他们学习的方法。所以,在“平行四边形的面积”这一课的教学中,我不仅仅是让学生掌握平行四边形面积的计算公式,更重要的是让学生在活动中积累基本的活动经验,让他们在经验的积累中感受、理解、掌握数学中“转化”的思想方法,为今后学习其他图形的面积奠定基础。如在学生上台汇报:将平行四边形转变成长方形时,我适时讲解“像他们这样,把没学过的知识变成已学过的知识,从而解决问题,这就是数学中的“转化”思想。并提醒学生,在今后的学习中,我们也可以像他们这样,利用转化的的思想,将没学过的知识转化为已学过的知识来解决。
学生的思考能力是有差异的,所以我在整体把握教学内容的基础上,设计了梯度练习。首先是基础性的练习,让学生利用所探究出来的公式求平行四边形的面积;接着是提高性的练习,既设计多余信息的练习,让学生的思考力得以生长。当学生看懂了平行四边形可以转化为长方形来思考,真正理解了“底乘高的原理时,我又创设一个反例练习,既在黑板上将一个活动的长方形框架拉成平行四边形,然后问学生:“长方形的面积和平行四边形的面积相等吗?”这时,学生受思维定势的影响,都一致认为“相等”。当我利用课件展示两个图形的平面图时,一部分学生根据已有的学习经验(即将平行四边形右边斜出的部分剪下,平移到左边拼成长方形,)而改变了意见。此时,我质疑学生:“为什么刚才把平行四边形转化成长方形,它们的面积相等。而现在把长方形的框架拉成平行四边形时,它们的面积却不相等呢?”然后再利用活动框架让学生直观地了解到:当我们把长方形框架拉成拉成平行四边形时,它的面积会越来越小,是因为平行四边形的高越来越短的关系。从而让学生理解“等积变形”的转化与“变与不变”之间的区别。最后我再通过两题判断题让学生充分理解,平行四边形的面积不仅与它的高有着密切关系,同时也与它的底有着密切的关系。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾。
(1)由于是送课下乡的活动,我对该班学生的学习情况了解不够。因而在学生的动手探究时,多数学生对学习记录卡的填写不熟悉。由此在这个环节花掉的时间超过我预设时间近十分钟。然而让我欣喜的是在学生交流汇报的环节,一部分学生的思维活跃,语言表达能力非常好,从而凸显出本课设计的精彩之处,以致于让听课老师不会因超时而不耐烦。同时也让我意识到,在今后的教学中,应对学习卡的设计慎之又慎。
(2)阶段性小结的重要性。适当的课堂小结可以帮助学生理清知识结构,掌握内在联系,对促进学生构建自己的知识体系,有很大的帮助。因此,在学生获取一个新的知识点后,教师应及时做个阶段性的小结。
幸运的我,相信在陈宏瑜名师的指导下,在我们团队的磨课中,会不断地改进,不断地进步,不断地创新,我们的课堂也将会更加精彩。
平行四边形的判定教学反思篇五
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习了平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算;(2)让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。培养学生观察、分析、概括、推导和解决实际问题的能力。(3) 使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
在教学设计方面,我先是让学生大胆猜测两个花坛(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观, 使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。
本课中我以学生为主体,教师主导,较好地完成了教学目标,但课中有些地方不够完善,需改进。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
平行四边形的判定教学反思篇六
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学总结了一些成功的经验和失败的教训,具体概括为以下几点:
1、亲身经历,感知公式推导过程。全体学生亲身经历,动手剪一剪、拼一拼,推导平行四边形面积。教学中,我先让学生在动手剪、拼的过程中,得到长方形。
2、利用课件,直观演示。
3、语言抽象。
以上面两个环节为基础,让学生回过头来想一想,“我们是怎样得出平行四边形的面积的”,学生把自己的所做、所看、所想,用自己的语言充分地表达出来,并进行利用。
4、把数学知识的教学融于现实情境中,学生在情境中学得高兴,学得扎实。我通过四小校门口这一个情境,将新知的学习置于这一现实情景中,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
5、充分发挥学生的主体作用,加强学生主观能动性的培养。
6、有效地渗透了数学的一些思考和学习方法。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。
7、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
平行四边形的判定教学反思篇七
本节课是《4、2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。
因此,本节课的教学环节我做了这样的设计:
第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;
第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;
第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;
第五环节,课本上的随堂练习巩固知识点;
第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。
教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。
本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。
作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:
1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。
2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。
3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。
4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。
5、对学生的学习与做题多些方法性的指导。
平行四边形的判定教学反思篇八
教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。
这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。
教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。
教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的'数学思维活动。
然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。
因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。
让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。
如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。
教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。
课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。
平行四边形的判定教学反思篇九
开学初,就被告知新老师要上汇报课,作为一个教书“小白”,顿时觉得有一丝紧张。估摸着应该在期中考试前,于是选了第四单元的内容。后来时间调整,重新选了《平行四边形的面积》这一课。
这节课是在学生已经掌握了长方形面积的计算公式和平行四边形特征的基础上进行学习的,由数格子的方法切入,我根据学生已有的知识水平和认知规律进行教学,现针对教学设计思路和实际课堂教学效果进行自我反思。
1、数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。学生积极主动地投入到数学活动中去。创设了学生熟悉的生活情境,学生也体会到了计算它的面积的用处,激发起学生的求知欲望。
2、动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,填写表格,观察表格数据后引出平行四边形面积的猜想。接着是读操作要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,并经历了知识的形成过程。
3、拓展方法,渗透数学思想。在教学时,以学生的验证推导为主,学生在之前大胆猜测的基础上,加上适时引导,学生自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。通过剪一剪,拼一拼,学生探究出了将平行四边形转化成长方形的.方法,并通过操作加以演示推导。
4、练习设计的优化是优化教学过程的一个重要方面。本课教学练习题中,第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,让学生判断计算是否正确,从而强调底和高必须对应,学习上更上一个层次。
结合实际效果,自我总结本节课的不足之处有:(1)转化思想渗透不够,平行四边形的面积计算公式是学生动手操作转化为长方形从而推导出来的,这一过程当中,应将“转化”这一数学思想渗透。而在实际教学中,转化思想没有突出,渗透不够。(2)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法。后两种方法只是教师讲解、演示给学生看。(3)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。(4)时间把握得不好,对知识的巩固运用做的不够,本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力,由于对时间把握不够,在课件中删除了这道题。
经验+反思=成长,是学者波斯纳提出的一个教师成长的公式,它清楚地揭示了反思在教师专业成长中的重要意义。因此,在以后的教学中,还需多反思。
平行四边形的判定教学反思篇十
《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。
在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。
在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。
数学教学的核心是促进学生思维的.发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。
教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。