每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
求等比数列之和的教学反思篇一
新课程理念倡导的数学课堂教学设计必须“以学生的学为本”,“以学生的发展为本”,即数学课堂教学设计应当是人的发展的“学程”设计,而不单纯以学科为中心的“教程”的设计。
一、教学目标的反思
本节课的教学设计意图:
1。进一步促进学生数学学习方式的改善
这是等比数列的前n项和公式的第一课时,是实践二期课改中研究型学习问题的很好材料,可以落实新课程标准倡导的“提倡积极主动,勇于探索的学习方式;强调本质,注意适度形式化”的理念,教与学的重心不只是获取知识,而是转到学会思考、学会学习上,教师注意培养学生以研究的态度和方式去认真观察、分析数学现象,提出新的问题,发现事物的内在规律,引导学生自觉探索,进一步培养学生的自主学习能力。
2。落实二期课改中的三维目标,强调探究的过程和方法
“知识与技能、过程与方法、情感,态度与价值”这三维目标是“以学生的发展为本”的教育理念在二期课改中的具体体现,本节课是数学公式教学课,所以强调学生对认知过程的经历和体验,重视对实际问题的理解和应用推广,强调学生对探究过程和方法的掌握,探究过程包括发现和提出问题,通过观察、抽象、概括、类比、归纳等探究方法进行实践。
在此基础上,根据本班学生是区重点学校学生,学习勤恳,平时好提问,敢于交流与表达自己想法,故本节课制定了如下教学目标:
(l)、通过历史典故引出等比数列求和问题,并在问题解决的过程中自主探索等比数列的前n项和公式的求法。
(2)、经历等比数列的前n项和公式的推导过程,了解推导公式所用的方法,掌握等比数列的前n项和公式,并能进行简单应用。
二、教材的分析和反思:
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
求等比数列之和的教学反思篇二
本课是“等比数列的前n项和”的第一课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也是以后学数列的求和,数学归纳法等的基础。本节的'有助于提升学生的创新思维和探索精神,其中充分利用数学文化背境故事引入课题,也是培养学生应用意识和数学能力的良好载体。
1.对教材的处理。首先借助数学文化背境提出问题,将学生带入了求棋盘麦粒总数的思考之中。然后引导学生分析数学现象,师生互动,设计五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现了错位相减法,让学生感受到这种方法的神奇。从而得出等比数列前n项和公式,再对公式进行简单应用,深化理解,最后总结归纳,回到故事结束,首尾呼应,把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。
2.设计思想是。本节课立足课本,着力挖掘,层次分明。充分体现以学生发展为本,遵循学生的认知规律。如本节课例题的设计,先通过精讲一题(例1),使学生既巩固了知识,又形成了技能;通过例题讲解(例2),进一步渗透分类讨论的思想,培养分类讨论的思想和思维的缜密性;再有设计选作思考题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”体现数学的文化价值。在教学思想上既注重知识形成过程的教学,还注重了学生学习方法的指导,探究能力的训练,引导学生发现数学的美,体验求知的乐趣。
3.不足之处。本节虽然以数学文化背景的故事为引例来激发学生的学习兴趣,然而却在求和公式的证明中以“可发现,如果式子两边乘以公比…”一笔带过,这个“发现”却不是大多学生能做到的,他们只能惊叹于解法的奇妙,从而求知欲却会因其“技巧性太强”而逐步消退。因此如何在有趣的数学文化背景下进一步拓展学生的视野,使数学知识的发生及形成更为自然,更能贴近学生的认知特征,这是我后面需要改进的方向。
总之,这节课收获多多,也意识到自身的不足,今后我一定要扬长避短,不断充实自己,争取更大的进步。
求等比数列之和的教学反思篇三
周至三中李天一
本节课是《等比数列的前n项和》的第一课时,学生在学习了等比数列的概念、等差与等比数列的通项公式及等差数列的前n项和公式前提下学习的,对于本节课所需的知识点和探究方法都有了一定的储备。这节课我充分利用情境,激发学生兴趣,顺利导入本节课的内容。
本节课我用心准备、精心设计、潜心专研,是我上好这节课的前提。在教学过程中,我充分体现了教学目标,抓住了教学重点,解决了教学难点,更重要的是,全班学生心、神、情、与我深度融合。这节课的.内容是“等差数列的前n项和”与“等比数列”内容的延续,为学生后面学综合数列的求和做了铺垫,重点是推导等比数列的前n项和的公式以及公式的简单应用,难点是用错位相减法推导等比数列的前n项和公式以及公式应用中对q与1的讨论。本节课我注重从“知识传授”的传统模式转变为“以学生为主体”的参与模式,注重数学思想方法的渗透和良好的思维品质的养成,注重学生创造精神和实践能力的培养,这在一定的程度上,激活了学生的思维,但对教师的挑战也是不言而喻的,不仅要透彻理解教材的意图,还要有宽厚的知识积累和深厚的自学功底。
在等比数列求和的教学时,开始我给同学们说了一个故事,“在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。”为什么呢?同学们很好奇,于是有计算器的同学拿出了计算器,结果没有计算完,计算器就算不出来了。激发学生的兴趣,调动学习的积极性,于是引入主题,等比数列求和。
首先让学生回忆等差数列的求和公式的推导方法,结合自己的预习谈谈自己对课本上等比数列求和公式推导过程的理解,其本质是什么?这样做的目的是什么?此时教师根据学生们的讨论和展示,适时点拨,指出问题的关键。在用错位相减法推出等比数列前n项和公式过程中,做差后提醒同学们,接下来要做什么工作,注意什么,学生们自然知道分母不能为零,因而知道了等比数列前n项和公式是分情况讨论的,为什么会有公比为1和公比不为1两种情况。此时再提醒学生等差数列求和公式是一个公式的两种形式,而等比数列求和公式是两种不同情况下的公式。然后是对求和公式的简单应用。所以让学生经历等比数列前n项和公式的推导过程成了本节课的重点与难点,在改善学生的学习方式上,是让学生提出问题并解决问题来进行自主学习、合作学习与探究学习。
在教学环节上我利用小组合作学习、学生自主学习、小组讨论、学生展示、师生点评,教师总结升华,当堂检测等环节,有效地实现本节课的教学目标。在教学评价上我关注学生,不单纯看学生是否会解题,关键是看学生是否动脑,看学生的思维过程来肯定和鼓励,如在解决情景问题的过程中,学生跃跃欲试、情绪高涨、讨论激烈,可能会探究出多种解决方案,适时地鼓励与评价,使学生的进取心得到增强,是激发学生学习数学兴趣的有效途径。我通过对学生的评价,将知识点和思想方法又得到强化。
总之,这节课也有不足,容量大,知识丰富,渗透归纳与推理、错位相减法、从特殊到一般、类比推理、分类讨论等数学思想,对学生要求高。但通过课堂反应,教学效果好,这是我感到欣慰的地方。
求等比数列之和的教学反思篇四
该引入能激发学生的兴趣,调动学习的积极性,怀里故事内容紧扣本节课的主题与重点。
此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定。
实际上,在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔。
在肯定他们的思路后,我接着问:是什么数列?有何特征?应归结为什么数学问题呢?
探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)
这时我再顺势引导学生将结论一般化,
这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。
对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)
再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式),这样通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。
4.讨论交流,延伸拓展
在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,
那么我们能否利用这个关系而求出sn呢?根据等比数列的`定义又有,能否联想到等比定理从而求出sn呢?以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围。以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用。
本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式.错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实.学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性.同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能.在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。
求等比数列之和的教学反思篇五
作为一名高中数学教师来说,上好每一堂课,要充分挖掘教材,要从“教”的角度去看数学,还要对教学过程以及教学的结果进行反思。高中数学不少教学内容适合于开展研究性学习;教学组织形式是教学设计关注的一个重要问题,提炼出本节课的研究主题。对学生来说,学习数学的一个重要目的是要学会数学的思想。他不仅要能“做”,还应当能够教会别人去“做”。以下是我对本次课教学的一些反思。
本节课主要有两个方面的内容,一是求等比数列前n项和的方法,即错位相减法;二是等比数列前n项和的公式。由于学生初次学习,以前没有接触过错位相减法方法,所以要想让学生自己总结出错位相减这一方法应该是比较困难的,所以我先从简单的多项式化简,构造两个类似的例子让学生自己比较它们的结构出发,给他们一个直观的感受。为拿出错位相减做铺垫。在教学中,学生也确实通过两个例子的比较,比较容易的总结出了这个方法。所以由学生自己来给出通项公式也就顺理成章了,拿出通项公式后,学生总习惯于直接套用公式而忽视对公式的分情况讨论,所以一定要反复强调。
课后,在各位数学老师的帮助下,我认识到在强调公式的时候只是从公式本身出发是不够的,学生理解的也很模糊,如果在这里加上实际的例子效果应该会更好,这是以后需要加强的地方。后面在讲解例题的时候由于时间关系,没有在黑板上进行细致的演算,一带而过,高估了学生的计算能力。
总之,结合新课程的教学理念进行相应的课后反思,努力上好每堂课,我相信可以不断提高业务能力和水平,从而更好地服务于学生。