在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
烙饼问题教学目标篇一
课堂上,我首先采用学生抢凳子游戏导入,使学生初步感受总是有一个凳子上要坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,也使学生集中注意力,把心思马上放到课堂上,让学生觉得这节课探究的问题既好玩又有意义,为后面教与学的活动做了铺垫。但这部分内容真正理解对于学生来说有一定的难度。在教学中我通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,总结“鸽巢原理”的规律,会用“鸽巢原理”解决实际问题。
在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用枚举法,让学生通过小组合作把4本书放入3个抽屉中的所有情况都列举出来,然后通过学生汇报四种不同的排放情况,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“书本数比抽屉数多1时,总有一个抽屉里至少有2本书”。进而介绍这种摆放的'方法是我们数学中常用的一种方法即枚举法。
2、让学生借助直观操作发现,把书尽量多的“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。
4、对“某个抽屉至少有书的本数”是除法算式中的“商+1”,而不是“商+余数”,适时挑出有针对性问题进行交流、引导、讨论,使学生从本质上理解了“抽屉原理”,总结出“抽屉原理”中总有一个抽屉里至少有的本数等于“商+1”。
5、本课教学中,学生对“总是”和“至少”的理解上没有进行结合具体的实例进行引导,学生在学习时理解有一些空难。
6、在数学语言表述上应该更加准确,使学生听起来更加明白。
在这堂课的难点突破处,也就是让学生借助直观操作发现,把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本。教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在练习中,让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”并进行反复练习。
在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。
烙饼问题教学目标篇二
解决问题的解题思路要清晰,整节课教学了解决问题的思路分从信息入手和从问题入手两个方法,条理有序,孩子们学的说的都很好,掌握得很扎实。主要是学习,下面我谈谈自己的一些感悟:
再解答的环节,可以先引导孩子从信息入手,找哪两个条件有关系,可以求出什么,再求出什么,板书使用了树形图清晰明了。孩子们都说的很条理清晰,平时孩子们语言表达能力培养的很扎实。
然后教学从问题入手,结合板书的树形图,从问题入手正好反过来想,板书利用的很巧妙,好的板书就是整节课知识点的缩影,所有孩子都能多看几眼,便于所有孩子理解和掌握。
总之,一节课内容很扎实,所有同学应该都学会了方法。
烙饼问题教学目标篇三
1、经历在具体情境中解决租船问题,尝试解决问题的不同方法,形成解决问题的基本策略。
2、在解决问题的过程中,培养比较分析判断的能力和优化的数学思想。
3、在合作交流中勇于表达自己的想法,学会倾听他人的意见。
教学重点:掌握解决租船问题的基本策略。
教学难点:通过对现实数据的分析进行合理调整,寻找最佳方案。
1.师:同学们,春天到了,老师想组织一次春游活动,他们想去划船,遇到了租船问题,请帮他们想一想,怎样租船最省钱?(板书:租船问题)
1.出示问题:人数:32人
小船租金:24元/艘 大船租金:30元/艘
小船人数:4人/艘 大船人数:6人/艘
2.师:怎样租船最省钱?这个问题怎样解决呢?你们有什么想法?先独立思考后可以同桌一组讨论一下。
3.学生独立完成,教师采样,合作交流:
提示:大船和小船的租金不一样,坐的人数不一样,每人付的钱?? 大船:30÷6=5(元) 小船:24÷4=6(元)
大船便宜,尽量多租大船。
1.生:租5条大船,1条小船,小船上还会空出两个座位,如果不空座位会不会更省钱?
2.师:小组合作,再调整试试,看看能否说明5条大船和1条小船是最省钱的? 小组合作,再次调整试一试。
3.反馈交流,上台展示:
1.师:我们是怎样解决这个问题的? 生:先假设,再调整。
2.介绍假设策略:
1.出示题目:p11 练习三 春游 问题:怎样租车更省钱?
成人:40元 学生:20元 团体(30人及30以上)30元 4、某公园门票售价有两种方案:
板书设计:
租船问题
先假设,再调整
一、 32÷6=5(条)??2(人)
30×5+24×1=174(元)
二、 30×4=120(元) 24×2=48(元) 120+48=168(元)
租船问题是人教版四年级下册第一单元的内容。目的是通过不同的租船方法,向学生渗透优化思想,在多种方案中通过比较、对比,得出最佳方案。
讲解为主的教学方式,而是让学生自己找出条件、提出问题、独立思考解决问题,并引导学生投入到探索与交流的学习活动中,使之在自主探索和合作学习相互结合的过程中,体验到数学与生活的联系。
这节课的教学中,也有许多不足,学生都知道要利用有余数除法的知识来计算,可是在最后的“答”这一环节就出现了问题,还有学生对于安排的合理性掌握也不算好,他们不知道怎样的安排才是合理的。所以在上课还应尽量多给学生一些主动探索的空间,多设计一些练习,让学生多说出自己的想法和思考过程,这样学生的主动性可能会发挥得更好一些,体会得更深一些。同时在小组合作中,可以采用学生提问的方式来提高小组活动的有效性。让学生更好的融入到课堂学习中!
烙饼问题教学目标篇四
反思整个教学过程,我认为这节课有以下几点做得比较好:
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。
然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我注重了对数形结合意识的渗透。生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系!当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如校园内花盆的摆设,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的。
烙饼问题教学目标篇五
反思本节课的教学,有以下几处优点:
1、本节课研究的是行程问题,是学生最难解决的一类应用题,教材上只安排了一道例题(环形跑道中的追及问题),我根据教学的需要对教材进行了适当的加工和处理,搭了一些台阶,增加了几道例题,由直线上的相遇问题、追及问题,到环形跑道上的相遇问题、追及问题,由浅入深,层层递进。
2、分析寻找行程问题中的等量关系是本节课的难点,为此在教学过程中我设计了两种不同的分析方法,一种是画图分析,另一种是列表分析,这样可以帮助学生寻找等量关系,从而列出方程,学生在这样的思路的引导下,逐渐掌握解决行程问题的方法。
3、运用多媒体教学,让问题情景再现,充分的调动了学生们的学习积极性。给教学的进一步开展奠定了基础。
4、让学生自己设计追及问题,分组讨论解决方案。
在教学过程中学生曾为环形追及问题进行了激烈的讨论,我此时记忆犹新,我引导学生把问题分成几类:
1,同时同地同向追及慢者在前(快追慢)
解决方法:快者路程—慢者路程=一圈路程;
2、同时异地同向追及慢者在前(快追慢)
解决方法:快者路程—慢者路程=两者相距路程(较短);
3、同时异地同向追及快者在前(慢追快)
解决方法:快者路程—慢者路程=一圈路程—两者相距路程(较长)
在解决第三种问题时,我们还总结了一句话帮助记忆:要想快追慢,路程换一换。更有优秀学生提出用相对速度来解决追及问题,在他回答后我给予肯定和表扬。
反思本节课的教学,有些地方需要改进:
1、课题气氛太活跃了,感觉有点控制不住,最气人的有两位学生因为争执竟然当堂吵价。看来制造活跃的学习氛围很重要,控制活跃的程度也是我以后要注意的问题,为自己定个目标:争取做到收放自如。
2、由于讨论占用了很多时间,对练习有点浅尝辄止的味道,故时间的安排也是要注意的问题,不然会影响了下一学科的教学。
希望我的学生和我自己,在课程改革的过程中,也能化被动为主动,不断地提出问题,研究问题,解决问题,一路思索,一路前进!
烙饼问题教学目标篇六
“植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在四年级下册的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。
本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:
学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。
既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。
教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。
植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;二是进行变式练习。我设计了6道练习题,引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。
这节课虽然不乏成功之处,但也有许多遗憾。
一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。
二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,
所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。
烙饼问题教学目标篇七
“植树问题”教材将植树问题分为几个层次:两端都种、两端不种、只种一端及封闭图形。
我设计了以下几个环节。
一、经过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。
三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。
四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、创设浅显易懂的生活原型,让数学走近生活。
课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下头的学习作了铺垫,同时也激起了学生的学习兴趣。
二、注重学生的自主探索,体验探究之乐。
生活情景图引入后出示实例图示,引导学生在观察、点数形象图形后进行填表,发现两端植树时棵树与间隔数之间的关系。当学生对实物图有了清晰的认识后,教师将形象的图形抽象成线段图,让学生在脱离实物图后,依然能够发现棵树与间隔数之间的关系。在电脑演示中学生直观的体会到了植树问题中相关的量,在观察思考后学生则进一步验证了棵树与间隔数之间的关系。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
这节课充分利用了多媒体设备,所以课堂容量较大,可是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。