人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
三角形的三边关系教学设计与反思篇一
解直角三角形及其应用是本章的重要内容。一个直角三角形有三个角、三条边这六个元素,解直角三角形就是由已知元素求出未知元素的过程。除了一个直角外,知道两个元素(其中至少有一条边),就能求出其他元素。这样的情况一般有五种,而解直角三角形的方法是本章内容的重点,因为,本章的学习目的主要就是使学生能够熟练地解直角三角形。而且也只有掌握了直角三角形的解法,才能够去解决与直角三角形有关的应用问题。在解直角三角形的应用这一节中,更充分地把“解直角三角形”运用到实际问题中去。通过一系列实际问题的解决,训练了学生分析与解决实际问题的能力,培养学生把实际问题转化为教学问题的能力。
在教学过程中,首先引导学生已学过的直角三角形有关元素之间关系的知识进行归纳整理,然后通过两道例题,体会直角三角形中除直角外的五个元素中至少要获得两个条件,就可以求得三个元素的特点,并归纳两个条件的类型。通过对直角三角形的理性分析和解题实践后,让学生体会到直角三角形中边角间的关系。主要通过三角形内角和与勾股定律和锐角三角函数比来表述。此外对不是直角三角形的,要领会数学化归的思想,通过作高,转化为直角三角形再来求解。
三角形的三边关系教学设计与反思篇二
1.如果把让学生经历探索三角形全等的条件的过程当成一种形式,那学生不可能真正进行有条理的思考,获取分析问题的经验。因此让学生花费足够的时间去探索三角形全等的条件,充分经历实践探索交流全过程有着重要的价值,而不能省略其中的一个或多个步骤。
2.在探索三角形全等的“边边边”条件的过程中,目标是明确的,问题是开放的,思维是发散的,操作是自由的,结论是待定的。学生把三角形剪下来,不仅出现了平移,还出现了旋转、翻转等运动,更出现了因作图错误或边角位置不对,而导致两图形不重合的情况,教师课前应充分考虑到各种可能出现的情况,引导学生自己归纳出图形不重合的原因,探索出确定三角形全等的“边边边”条件。教师应保持开放的心态,树立终身学习的意识,不断进取,才能适应新的变革。
三角形的三边关系教学设计与反思篇三
用三角形撕拼的方法验证“三角形三个内角的和是1800。”在直观操作的基础上,将直观操作与推理相结合,将有机地把模型转化为几何图形。引导学生通过观察操作、归纳、推理、猜想、交流、反思、解释等活动,逐步体会数学知识的产生、形成与应用的过程。通过教师引导学生在具体操作活动中进行独立思考,鼓励学生发表独立的见解,并与同伴进行交流。学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生获得亲身研究探索的积极体验,有效地促进了全体学生积极参与的热情,解决了数学知识的抽象性与学生形象思维之间的矛盾,让学生真正动起来,让学生在丰富多彩的活动中,轻松愉快的主动获取知识。
二、尝试成功,体验快乐
心理学研究表明:一个人只要体验到成功的快乐,便会激起再一次追求成功、胜利的信念。因此。我根据学生的心理特点和实践任职的水平,努力为起创造成功的条件。如:在简单的撕拼及猜一猜的游戏中努力做到全班总动员,学生的积极性异常高涨,能够全身心地投入到自主探索的时间中。在尝试成功时,让学生体验到成功的喜悦,进而产生对探索知识的浓厚兴趣。
三、存在问题,改进措施
本节课存在问题:其一,由于时间的限制,在推理验证的问题上,没能关注到每一位学生;其二,由于追求验证方法的多样性,而学生对平行的判定方法没有灵活掌握,险些偏离本课的重点。此次教学过程遇到点儿挫折,有待在以后的教学中继续探索,努力提高自己的教学水平,提高学生学习数学的信心。
三角形的三边关系教学设计与反思篇四
掌握直角三角形的边角关系并能灵活运用;会运用解直角三角形的知识,利用已知的边和角,求未知的边和角;能结合仰角、俯角、坡度等知识,综合运用勾股定理与直角三角形的边角关系解决生活中的实际问题。
《课程标准》中指出“教学中应当有意识、有计划地设计教学活动,引导学生体会数学之间的联系,感受数学的整体性,不断丰富解决问题的策略,提高解决问题的能力”,注重对学生对知识间的沟通与联系进行讲解,将这些知识点灵活组合,通过综合性题目所提供的信息,搜寻解决问题的相关知识点,找出解决问题的方法。
在平时教学中能讲到中考一模一样的题目的可能性微乎其微。那怎么办,教给学生思考方法和解题的策略往往更有用。这样可以举一反三,会一题可能就会掌握一类题,并在学生理解之后及时复习巩固,努力把新方法新技巧纳入到原有的知识体系中。在解题中应该尽量的让题目一题多解,或者多提一解,尽量在学生思维的的转折点处进行点拨,这样最有效。
三角形的三边关系教学设计与反思篇五
(1)本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生知道什么叫做解直角三角形,直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系.正确选用这些关系,是正确、迅速地解直角三角形的关键.
(2)让学生深刻认识锐角三角函数的定义,理解三角函数的表达式向方程的转化.
锐角三角函数的定义实际上分别给出了a、b、c三个量的关系,a、b、c用不同方式来决定的.三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.当这三个实数中有两个是已知数时,它就转化为一个一元方程,解这个方程,就求出了一个直角三角形的未知的元素.
(3)解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用。因此,在处理例题时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想。其次,教师组织学生比较各种方法中哪些较好,选一种板演。
三角形的三边关系教学设计与反思篇六
上完本节课可以说是感触颇多,更深刻体会了教学是一门缺憾的艺术这句话。课堂精彩的生成离不开之前精心的预设,课堂教学也因预设而有序正是因为如此我认为本节课有以下几点成功之处:
一、教学理念符合课改精神,对整节课教学目标理解较到位,把握的较准确。根据教材地位、新课程标准的指导思想及七年级学生的认知心理特征及年龄特点,我从以下四个方面确定本节课的教学目标:知识与技能、数学思考、解决问题、情感态度与价值观。通过本节内容教学,使学生认识数学与数学、数学与生活的密切联系,体验在数学学习活动中合作、探索、交流与创造的乐趣.并为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会.
二、教学过程中各环节设计的比较优化合理因为我带的是一所普通中学的学生,不可能以培养精英的理念展开教学,我要极大限度的调动所有学生的数学学习热情,发挥学生互助的力量使每个学生在自己原有基础上学有所得,因此我在设计时突出了以下几点:
2.创设情境,激发学生学习兴趣,使学生在解决问题的过程中,体会到成功的快乐.根据低年级学生好奇的心理特征通过点击学生喜欢的图片引出题目,激发了他们的求知欲使他们很快投入到学习中去。
3.重视学生的课堂参与。学生上台板演另一组学生来批改把课堂教给学生.通过自我尝试、发现问题、纠正错误的过程,以及学生自主探究、合作交流、反馈评价,培养学生团结协作的情感和勇于探索、创新的精神,使他们获得分析问题的经验和解决问题的能力。老师充分作好活动的策划者、引导者的角色。活动中师生互动、生生互动,形成了一个立体信息交流网络。
竞赛,获胜的同学们在感受成功的快乐时也充分体会了合作与共享的乐趣。
当然精心的预设也无法全部预知上完课后还是存在遗憾,为了做到实验的有效,却在此花费太多时间使得其它环节进行的较紧促,还有揭示课理这一环节我没有正真做到放手让学生去完成,教学过程中教师始终是引导者要充分突出学生的主体地位,我还是没有完全解放思想。也许正因为教学是一门有缺憾的艺术,它才使得我们教师用毕生精力去完善去追求!
三角形的三边关系教学设计与反思篇七
课前我把全班三十五人分为七个组,每个组指派正副组长两名。上课伊始,我让学生先自学课本,我不给任何指导意见,这样做基于不干扰学生探究知识的思路。
十分钟后,小组自学活动结束,每组汇报探究的成果,孩子们零零碎碎地把本节课所要学的知识一个个抖落出来。课前我也将这些知识点作了一个预设,罗列了如下:等腰三角形、腰、底、底角、顶角、等边三角形……接着我引导学生对这些概念结合图形进行深入理解,最终学完了本节课,学生饶有兴趣地学习了一节课。
课后我反思了这节课,颇有收获:
一、每个学生都有自学能力
我以为学生没办法自学,很茫然,其实不然,他们在自学课本时,有自己的认识、收获和想法,尽管有点不够准确或不完善的想法,但相比较往日习惯等待灌输的做法的确有些触动。学生能够揭示本课的知识点,可能基于他们语文学习的课前预习,尽管能力不强,但值得肯定的。
二、每个学生都能发表自己的'想法
往日的课堂,我抛出的问题无人问津的情况经常有,而今天围绕学生挖掘的知识点展开提问或让学生相互提问,学生很乐意说自己的想法,没有拘束,真切地感受到学生的课堂学生做主。当然这节课中我也意识到一个好的和一个不好的个人素养,当一个孩子发言胆怯时,同伴的掌声鼓励了他们的勇气,说得不好的地方,请本组同伴帮忙,让学生切实感受小组合作的力量;当一个孩子发言错误时,总会引来其他孩子一些不怀好意的笑声,我及时制止并教育学生要懂得尊重别人、倾听别人的意见,谁没有犯错的时候,讽刺的笑声应该从课堂中消失。
三、每个学生都想发表自己的想法
学生在学习的过程中卡壳时,启发后还有困难,只能由老师揭示答案。一些学生情不自禁地说:“我也是这样想的。”我笑着说:“机不可失,时不再来,给你机会时为什么不讲?下次要大胆发表你的意见,哪怕就是错的,至少你思考了。”孩子们调皮地说:“我怕说错。”他们道出了自己的想法,也是我在以往教学中做得不够的地方。孩子们需要鼓励和赏识,才乐意说出自己的想法。