范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
长方形的特征导入篇一
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
1、找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、激发学习中的困惑,让探究走向深入。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的`倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
《3的倍数的特征》教学反思
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准知识冲突激发探索愿望。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
长方形的特征导入篇二
《3的倍数的特征》是学生在学习过2.5倍数特征之后的又一内容,因为2.5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出了3的倍数特征。
找准备知识中冲纷激发探索,在第一环节中我先让学生复习2.5的倍数特征并对一些数据做出了判断而后我们“谁来猜测一下3的倍数特征”激发学生探究的愿望。由于学生刚刚复习了2.5倍数的特征,知道只要看一个数的个位,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来。但实际上,却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样不反有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
找准知识之间的冲突并巧妙激发出来,这是一节课的出彩之处,刚开始我们先采用课本上百数表来研究,结果在一个班实践后认为效果并不是很理想,由于数太多,让学生观察3的倍数的这些数时,并从中找出相同的地方,结果,很多同学找了与本节课毫无关系的东西,浪费了很多时间。在评课的时候,我们又讨论是不是找一些数代表百数表,于是我设计了一个表格,让学生用除法计算的方法找到3的倍数的特征,并观察这些数,这些数的个位分别从0到9都有,让学生知道3的倍数的特征跟数的个位没有关系,然后从中又把像45和54,75和57,123和321等特殊的数单独展示出来,让学生观察从中找出规律。结果我又重新上了这节课,效果比上节课要好。
长方形的特征导入篇三
在执教《2、5、3的倍数的特征》后,我针对本节课的教学情况进行反思。
虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。
备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。
高效课堂要充分发挥学生的主体作用,要体现学生会学,学会,在本节课上,学生合作学习的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。
长方形的特征导入篇四
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的'倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
长方形的特征导入篇五
通过本节课的教学,我觉得基本上达到了课前预设的教学目标,可能有以下几点:
图形周长的意义是同学已有的认知基础,更是长方形、正方形周长计算方法的核心,只有抓住这个核心,引导同学从周长意义动身,去反思、解释,才干形成科学的知识结构。如:同学在交流周长计算方法时,注意引导同学围绕周长意义来进行辨析,从而掌握计算方法。再如:第二个练习,当多数同学出现4+7+2+3=16这种方法之后,和时引导同学借助周长意义来发现问题。这样,通过以上活动,协助同学理解掌握了周长的计算方法,同学不只知道怎样计算,还知道为什么这样算。从而形成牢固知识结构。
本节课,注意在关键地方创设问题。如:“仔细观察情境图,图中都有哪些信息,根据这些信息你能提出数学问题吗?”这是知识的生长点;“要求给长方形花坛安上护栏,需要先求什么?”这是知识的转折点,为学习新知奠定了基础。和时协助同学分析问题。再如:出现(4+8)×2这种方法时,引导同学说出括号里要求的是什么?在重点处协助同学理解方法。再如:“猜猜看,一个长方形的周长是12厘米,用两个这样的长方形拼成一个大长方形,它的周长是多少厘米?”在同学思维容易混淆的地方,创设问题,激发同学认知抵触。引发同学探究学习的兴趣。最后一题“你能根据今天学习的长方形周长的计算方法求出它的周长吗?”在同学思维受阻的地方创设问题,为同学思维指明了方向。正因为能在关键处创设问题,能激发同学学习兴趣,同学学习比较投入,为同学学习方法奠定基础。
本节课,在引导同学发现问题、理解问题的基础上,注意先让同学独立考虑,在同学有了想法的基础上再引导同学进行交流,在交流过程中,教师注意引导、点拨,协助同学理解计算方法,思维发生碰撞。如:探索周长计算方法时,先让同学独立考虑,当同学有了想法,和时交流,再借助周长意义来判断理解掌握方法。再如:练习一,先猜一猜,找准问题,然后验证,找到答案,再解释原因。“为什么拼成大长方形后周长是20厘米,而不是24厘米呢?你是怎样想的?”同学发现,这两个宽已经不是拼成的大长方形的周长了。发展了同学的思维。正因为有了同学独立考虑,同学才有言可发,正因为有了教师的点拨,同学认识才比较到位。
如:练习一,问题一从先求一个小长方形的周长入手,再验证,最后通过拼生长方形和正方形周长的对比,发现减少的越多,剩下的越少,反之减少的越少,剩下的越多,渗透一种函数思想。再如:练习二,是一道发散思维题,是一个一题多解和多题一解。一题多解巩固了周长的计算方法,同时发散同学的.思维;后面多题一解,发展同学概括能力,同时体会转化思想。
长方形的特征导入篇六
学习几何图形,对低年级同学来讲是较困难的。为此,鼓励并创设学生参与活动机会,是重要的教学组织策略。本节课的设计重视让学生通过自主探索主动参与获取知识,同时教学内容的设计能从学生的特点出发,激发学生学习的兴趣。主要是从如下几方面努力的:
1、创造性使用教材。
在教学过程中,根据实际的情况,有机地补充了寻找生活周围的长方形和正方形等这些内容,让教材更贴近学生的实际。借助多媒体变静态、枯燥的练习为动态的、学生感兴趣的练习内容。
2、本课设计主要着眼于长方形、正方形的特征关系的整体入手组织教学环节。
从最初的寻找生活周围的长方形和正方形,说基本特征开始,主要引起学生对长方形、正方形“四条边、四个角”特点关注,这已渗入了二者的共性认识。其次在内容的探究中,将二者同时以问题呈现,学生边探索长方形,又探索正方形。无意识中,加强学生对二者关系进行自我对比感知,使学生在体验的过程中获取知识。学生通过自主探索、合作探索实践感悟到长方形、正方形的特征。培养学生观察能力和实践能力,也注重学生在实践中提炼知识的本领,形成整体的能力。
3、新课标中指出“动手实践、自主探索、合作交流是学生学习数学的重要方式。”
在课堂教学中,应该放手让学生去探索、去发现、去交流,从而得出结论。这节课很好地做到了这一点,在整个课堂中,动手操作贯穿始终,注重让学生在动手实践的过程中去体验、感悟、发现长方形、正方形的特征。如通过“折一折”“量一量”“说一说”这些活动,让学生自主探索到了长方形、正方形的特征,并且发现了两者的异同;通过“变魔术”的活动,让学生在推一推、拉一拉的过程中,发现了长方形和正方形的关系,让学生灵活运用所学知识,进一步加深对长方形、正方形的认识。
长方形的特征导入篇七
教了十几年数学,我觉得自己对教材和学生都掌握得很好,但今年在教学《长方形的周长》时,我才认识到自己的感觉是错误的。
在和学生共同探讨认识了“什么是物体的周长后”,我出示了一个长方形,引导学生开始了如何计算长方形的周长。学生们开始分组探究,学生学习的积极性很高,也很投入。很快,一只只小手接连不断的举起来了。我让小组选代表汇报合作探究的成果:
“9+7+9+7=32(厘米)!”
“9+7+9+7=32(厘米)!” ……
没有出现我的预设效果。我只好进一步鼓励说:“谁有更好的方法?”
“9+9+7+7(厘米)!” 一个平时表现很好的学生站起来发言。
我心里有点失望,可是还鼓励说:“不错!谁还有更好的方法!”
没有同学再举手了。
我说:“汇报的同学说说你们是怎样计算的?”
“我测量了长方形的长和宽,然后两条长加两条宽。就得到了它的周长。”几乎每个同学都如是说。
看到学生自己归纳不出长方形的周长计算公式,我急了,只好硬往公式上引导:我说:“长方形两条长,那 么9+9可以用乘法算式表示9×2。宽用乘法算式表示为7×2。所以,长方形的周长可以用这样一个公式表示:长方形的周长=长×2+宽×2。也可以先算出一条长和一条宽的和,再×2。长方形的周长=(长+宽)×2。”
接下来是课堂练习,我出示了三个长方形让学生计算周长。全班只有一半左右学生用我的公式方法计算,还有一半学生是用加法做的。
这堂课上完后陷入了沉思:以往自己是怎样教的?好像是先告诉学生公式,再引导学生用公式计算长方形的周长。现在提倡学生自主探讨知识,如果硬让他们死记公式是背离新课改要求的 。也许让学生先记公式再学计算周长,就学习成绩而言可能会高点,可是长此以往,学生学到的是死知识,他们的思维永远被禁锢在老师的讲解之下。对这些三年级小学生来说,难道学生自己得出的长方形周长=长+长+宽+宽,不是更直观、更明白的公式吗?!
既然学生心里没有公式,教师就不能把一些刻板、抽象的数学知识强加于他们,只要他们的算法有道理,教师就要鼓励,新课改提倡用不同的方法解决问题,课本上不是也没有像以前那样注明长方形周长计算公式吗?今天他们自己总结出最好记、最好用的计算方法,说不定在不久的将来他们会摘取数学皇冠的明珠呢!