在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
假设策略单元教学反思篇一
一、说教材。
首先说说我对教材的理解。这部分内容是苏教版六年级上册第四单元的《解决问题的策略》的第一课时,在此之前我们学习了一些解决问题的策略,以及列方程解决实际问题,这为我们本节课的学习奠定了知识基础,而本节课将为我们后面要学习的解决更复杂实际问题奠定基础。
二、说教学目标。
新课标要求,人人都要获得良好的数学教育,不同的人获得不同的发展。根据这一理念,联系学生实际,我制定了以下教学目标目标:
1、知识目标:让学生在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、技能目标:让学生在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
3、情感目标:进一步培养学生独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
三、说重难点。
本节课的教学重点在于:理解并运用假设的策略解决问题。
教学难点:运用假设策略要理清楚新的数量关系。
四、说教法、学法。
新课标指出:学生是学习的主体,教师是学习的'组织者,引导者,合作者。为了达到这一要求,为了实现教学目标,有效突出重点,突破难点,本节课我将运用启发式教学、复习引导教学、讲授法、探究法等多种教学方式,去引导学生积极思考、自主探究、合作交流,引导他们去感悟运用假设策略解决实际问题的妙处。
五、说教学程序
根据上述分析,结合学生的实际情况,我将本节课分为以下几个教学环节:
第一个环节:复习铺垫,引入课题
首先,我向学生展示两道关于果汁的问题,这道题目是根据教材中的例题改编过来的。读题并提问:“同学们,你会解决这两个问题?”让学生根据题意分别列出算式后,引导学生提问:“你能说说每一道题目都是根据什么数量关系式列式计算的吗?(学生积极思考后,回答问题)接着提问:“每一道题目中都有几种类型的杯子?”接着指出:只求一种杯子的容量是比较简单的。
然后,出示例1,先让学生齐读题目,体会和上面两道题目的不同。接着,比较两道题目的异同点,培养学生审题与表达的能力。根据题目的异同点引出课题,今天就来学习解决这类含有两个未知量的实际问题的策略。通过改编例题也会学生解决例题提供了一种思路,为下面的教学做了很好的铺垫。
第二个环节:合作交流,探究策略。
解决这道题目似乎有些困难,先和学生一起分析一下题意,找出两个数量关系式。
然后让学生根据数量关系式再联系以前的知识,讨论探索解决这个问题的思路。学生的思路可能有:第一种:列方程,让学生说出怎么设未知数,设小杯的容量是x毫升,则大杯的容量是3x毫升。第二种:画线段图的方法。引导指出一般我们先画单倍量。小杯共9段,大杯共3段。第三种:全部换成小杯,一个大杯就可以换成3个小杯,一共9个小杯。学生只要说出思路即可,然后事实总结三中思路的共同点,引导学生进一步思考。学生能够发现:都是把两种杯子转化成了一种杯子(小杯)。根据学生们的发现,可以指出:像这样把两个未知量转化成一个未知量的方法就是我们今天要学习的策略假设,运用假设策略可以把复杂的问题转化成简单的问题。进一步揭示课题。
接下来,让学生打开课本69页,任选其中的一个思路解决这个问题,填写在书上,并提醒学生要检验。教师巡视,观察并引导学生的解题方法。学生完成后,选择使用列方程和画线段图的学生说说解题过程。因为这两种方法是以前学过的,这节课就一带过过,目的是让学生明白解决一个问题有很多方法,起到活跃学生思维的作用。而本节课的重点是第三种思路全都换成小杯,也就是假设全是小杯,需要重点讲解。根据课件辅助教学运用假设全是小杯的解题思路和过程,提供给学生一种思考过程,因为是本节课的重点,所以请了3位学生按照该思路想一遍,然后再让全班学生想一遍。思路比较明确了,学生比较容易的根据思路列出算式,教师根据学生想法板书解题过程,以及检验过程。学生容易忽略检验的重要性,所以一定要提醒学生养成检验的好习惯。
提问:刚才假设全是小杯解决了这个问题,这道题还可以怎样假设?让学生不能只满足于解决问题,还要多加思考用不同的假设解决问题。学生比较容易想到还可以假设全是大杯。同样,根据课件讲解思考过程,这一遍主要是让学生自己说,自己想,独立完成解答。
第二环节:归纳整体,提炼策略
讲完例题后,及时回顾整个例题,总结运用假设策略解决问题的步骤,让学生进一步理解假设策略。根据刚才解题的过程,一步一步地总结出5个步骤,第一步,分析题意,找到数量关系,发现要求两个未知量,需要使用假设策略。第二步,做出假设,假设全是小杯或假设全是大杯,把两个未知量转化成只有一个未知量的问题。第三步,根据假设,调整数量关系,使数量关系变得简单。第四步,列式解答。第五步,检验反思。
第三环节:运用策略,掌握策略
出示练一练,及时巩固新知。练一练是和例题类似的题目,于是我要求学生根据刚才总结的运用假设策略解决问题的5个步骤,去思考并解决这个题目。这道题可能对一部分学生来说还是有些难度,于是我和学生一起完成了第一步分析题意,让学生找到数量关系。接下来的4步就由学生独立完成。第2步时提醒学生假设全是什么更方便解题。一些学生会模仿老师的解题步骤完整得做完这一题。这就说明他们学会了运用假设策略。通过本题提问为什么不假设全是桌子,让学生明白在做假设时要选择方便解题的那个假设。
在以前的学习过程中,学生已经在不知不觉中,使用过假设策略。让学生先回想一下,小学生的联系知识能力并不强,可能不能一下子想出来。于是,教师让学生观察老师想出来的,让他们判断一下是否运用了假设策略,进一步加深对假设策略的理解,同时也培养学生联系知识的能力,让学生有用新知联系旧知,让自己的知识成为一个体系的意识。
第四环节:运用策略,闯关练习
简单总结一下所学新知,设计三个题目,考察学生掌握情况。题目由易到难,层次分明。第一关,填空题,有一个是看图填空,题目比较简单,学生基本都能通过,这便增强了学生的信心,提高了继续闯关的欲望。第二关,稍有难度,但题目中提供了解题思路,根据解题思路,多数学生可以正确解答出来,启发学生课下运用第二种假设解决该题目。第三关,图文题目,先让学生从图中读出有用的信息。然后独立完成,教师巡视,用奖品激励大家认真完成,并找出运用不同假设策略解决问题并且书写完整和完美的学生,放到展示台上供大家学习。
第四个环节:归纳小结
提问:今天你有什么收获?通过学生自己归纳,对所学过的知识进行整理,进一步培养学生归纳概括的能力。
板书设计:
假设策略单元教学反思篇二
复杂简单
假设全是小杯分析题意
共有:31+6=9(个)
小杯:7209=80(毫升)作出假设
大杯:803=240(毫升)
检验:806+240=720(毫升)调整关系
803=240(毫升)
答:小杯的容量是80毫升,大杯的列式解答
容量是240毫升。
检验反思
假设策略单元教学反思篇三
12月11日教研室成员来我校常规调研,汪主任听了我的一节《解决问题的策略》,课前我是这样思考的:学生在例题1中初步体验了替换的策略,教学例题2时要主动应用这些策略解决实际问题。教材鼓励学生解决问题方法的多样化,所以在实际教学中,我要注意把握。如:提出的假设可以是多样的。教材呈现了两种比较典型的假设,即假设10只都是大船和假设大船和小船各5只。另外开展替换活动的载体可以是多样的,图画枚举和列表枚举等,这些都是已经教学的解决问题的策略,学生有能力应用这些策略。结合使用画图、列表、枚举,也体现了解决问题的策略是综合而灵活的。
教学例题2时,一是组织猜想,引发假设,拓展思路。在创设情境后可以让学生猜一猜“可能是10只怎样的船”。通过猜想启发学生思路,引导学生指出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。二是验证假设,引导替换,有序思考。每一个学生都要对自己的假设进行验证,看这些船是否正好能坐42人。如果学生的假设多样了,那么大多数假设都不是问题的答案,需要调整,即进行相应的替换。学生的替换活动逐步进行, 培养学生有序思考的习惯。三是交流解法,寻找共性,体验策略。可以先交流各种假设与替换的方法,以及采用画图或列表的策略,发展思维的开放性与灵活性,再寻找这些方法的共同特点,进一步体会解决问题的策略。
例题2是综合运用多种策略解决实际问题,所以学生思考的空间大了,难度高了。对于教材上出现的画图假设,列表假设,等等,都可以肯定,在教学中不必要求学生掌握每种方法,可选择自己最合适的方法理解。并且要让学生体会到,例题2中介绍的画图假设、列表假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图列表等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。
课后经过汪主任的评点,使我对教材有了更深层次的领悟。特别是对假设这个策略,最后提炼出经典的4个词“假设——比较——调整——检验”4个步骤,这是我课上没有概括出来的。虽然我是按照这几步来做的。但没有概括出来,学生仅仅停留在解决问题上。学生还处于模仿状态。
解决问题的策略这一单元是新课程的一个创新,以前所没有涉及的,我在教学中也是努力在学习。往往是拿到教材,先翻阅教师用书,看看前人是怎样总结的,他的意图怎样,但往往会框住我们的思维,所以汪主任鼓励我们要有自己的思考,自己的创新。这是我要努力的方向。让我以三个“学”来勉励自己:“教——学也;始于自学——学也;终于教人,——学也。”
假设策略单元教学反思篇四
新课标指出:学生通过义务教育阶段的数学学习,“经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力。” 学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过创设的现实情境,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。
这节课课主要体现以下几个方面:
先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的.目的。体现了学生是学习的主人。
在交流探讨中,不同学生采用不同的解题方法,最后优选出一种方法,即当学生在了解不同解题方法的同时,教师不失时机地向学生重点介绍他们都能接受的一种解题方法——假设法,使学生明确解题时掌握一种基本的解答方法。
通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题——鸡兔同笼问题,还能解答我们身边的问题。
在探究中学生发现和提出问题的能力得到培养,提出解决问题的能力以及表达思想和交流成果的能力,学会利用多种有效手段,通过多种途径获取信息的能力都有所增强。
通过解决问题的策略的教学,使我更加明白了 “数学方法是数学的灵魂。”数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法获得是更重要的。
假设策略单元教学反思篇五
对于新教材中“假设”的策略我是这样理解的:“假设”是解决问题的一种思想方法,“换”是为了实现“假设”的一种手段。策略的教学更强调让学生感悟和体验,只有真正地充分地感悟和体验,才能实现对于策略的“悟”。本课,我带领学生提出问题、研究问题、解决问题、归纳总结,较充分地经历了体验与感悟的过程。
课始我由易渐难,让学生抢答:(1)把720毫升果汁,倒入9个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?(2)把720毫升果汁,倒入3个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?紧接着出示:例1小明把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的13。小杯和大杯的容量各是多少毫升?继续抢答,当学生迟迟不举手、面露为难之色时,我忙上前关切地问:“怎么了?”生道:“有点儿难?”我顺势同时出示这3道题,说:“这题和前两题比,难在何处?”有了比较,学生立即反映出:“这题有两种杯子,两个未知量,而前两题只有一个杯子,一个未知量。”我顺势利导,装作恍然大悟:“噢,是呀,如果这一题也能像前两题一样只有……学生接过话茬说:“要是也只有一种杯子就简单了。”我开玩笑地说:“你们想得可真美!这个美好的愿望能实现吗?”抓住学生这一迫切地心理需要,我紧接着引导学生仔细分析题中的数量关系,展开了新授序幕。
正是因为有了比较,在接下来的学习中学生才切身感受到运用假设策略的好处,才乐于运用这种策略。
假设策略的本质是对于一个新问题通过对未知量进行假设,然后通过分析逐步逼近正确答案,最后把答案给“找”出来,从而使问题得以解决,它体现了一种逐步逼近的思想。也就是对于假设的策略来说,假设只是一个引子,其根本应该是根据两种未知量之间的关系实现假设,是通过“换”来“找”出答案。当学生分析完题中的条件时,我话锋一转:“还记得刚刚咱们许下的愿望吗?”“你想假设都是什么杯子?你的这个愿望能实现吗?怎么实现你的愿望?依据是什么?”“还有不同的想法吗?”在展示交流学生的解题过程时,我让学生互相提问,并对提问作出明确要求:“通过你的提问一步步逼出他说出具体的想法。”通过猜想启发学生思路,引导学生提出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。最后让学生选择喜欢的方法列式解答。
虽然策略的学习关键在悟,要多让学生体验和感悟,但这并不因此就否定或削弱总结与概括的作用。事实上,必要的总结、归纳与提炼对于学生形成对策略的清晰的认识,建立策略模型起到非常重要的作用。本课,当学生经历了铺垫渗透,探索感悟两个环节后,对假设的策略已经有了一定的认识,这时就适时引导学生进行归纳提炼:回顾解题过程,你有什么想说的吗?在解决例1时我们遇到了什么困难,通过和前两题的比较有了什么想法,怎样解决困难的,需要注意什么?通过这样的归纳与提炼,学生对假设的策略就有了整体的认识,从而可以在解决问题中实际正确地运用假设的策略。
整节课,我由扶到放,出示例题时结合情境图让学生理解题意,并画一画体现“换”的过程,这样更形象,更简单易懂。画图假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。所以当学生对“假设”的思想初步感悟后,在练习时我先是引领学生分析关键句,说一说解题思路,再完成,最后是完全放手让学生独立解决问题再向指名汇报叙说自己的解题过程。
总之,数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法的获得更重要,我想这也应该是解决问题的策略的教学目的之一。