范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
因数与倍数单元教学反思篇一
1倍数和因数这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,在此基础上认识因数倍数。而这里的处理的方法有所不同,在这之前学生还没有学习小数乘除法,只接触过整数乘除法,因此教材通过用12个小正方形拼长方形并写乘法算式来引入因数和倍数。
2要求学生用乘法算式表示自己的长方形的不同摆法,帮助学生建立起乘法意义的表象,为后面利用乘法找因数和倍数埋下伏笔。
3重视说的训练,要求具体明确。“谁是谁的倍数,谁是谁的因数”当学生说到12*1=12时,感到有些拗口,教师即时鼓励,体现了数学的人文精神和不放过任何细节的作风。
4如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下五分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这不老师给予有有效得多。
5练习形式活泼多样,即颠覆传统又扎实训练。
因数与倍数单元教学反思篇二
本单元注意以下几个方面的教学,可以促进学生巩固基础知识,促进学生发展基本思维能力。
1.加强概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
本册新教材采用整数除法的表示形式教学,便于学生感知因数和倍数的本质意义。注意因数与倍数的相互依存的关系;质数、合数与因数的关系;偶数、奇数与2的倍数的关系等,形成概念链,依靠理解促进记忆!
2.注意培养学生的抽象概括与归纳推理能力
关注由从具体到抽象、由特殊到一般的概括、归纳过程,即从个别性知识推出一般性结论。如质数、合数:写出1——20各数的因数进行归纳推理,熟悉20以内的质数,制作100以内质数表。
3.教给学生养成“有序学习”的良好学习习惯。
4.加强解决问题的教与学,新教材增加了探索两数之和的奇偶性的纯数学问题,可以根据两数之和的奇偶性的规律推理出两数之差、两数之积的奇偶性,并渗透解决问题的策略。
5.拓展学生的知识面。如探究既是2的倍数又是5的倍数特征;4的倍数特征;6的倍数特征等,开拓视野,发展思维!
因数与倍数单元教学反思篇三
因数与倍数属于数论中的知识,是比较抽象的,学生学习理解起来有一定的难度,本节课是在充分借助学生已有的知识经验的基础上切入课题。学生在此之前已经认识了乘法各部分名称,对“倍”叶有了初步的认识,从而本课由此入手,让学生由熟悉的知识经验开始,结合问题引发学生提升思考并发现新的知识结构,体会到此“因数”非彼“因数”,感觉到“倍”与“倍数”的不同。
在探索找一个数的因数的方法时,为了让学生更加形象地体会出“要按照一定的顺序去找”才不会遗漏和重复,本课制作了动态的数轴图,通过演示18的因数有1、18(闪动),2、9(闪动),3、6(闪动)学生直观地看到了“顺序”,并且在观察中看到区间不断的缩小,到3至6时观察区间,真正体会到了“找前了”这一学生难以真正理解的地方。
本课中还要注意到的就是学生在汇报找到了哪些数的因数时,教师根据学生汇报所选择板书的数字要有多样性,如选择板书的数要有奇数、偶数、质数、合数等,虽然此时学生还不知道这些数的概念,但这时给学生一个全面的正面印象,有的数因数个数多,有的少,不是一个数越大因数的个数越多……为后面的学习做好铺垫。
人教版五年级数学下册第二单元《因数与倍数》教学反思
本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别。还要掌握2、5、3的倍数的特征。这一单元的内容与原来教材比较有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。从学生学习的情况来看,这一改变并没有对学生造成任何影响。
本单元的内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在教学过程中,本人就忽视了概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,所以教学效果也不怎么理想。要解决教学中出现的问题,经过反思,我认为要做好两点:
(1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但本单元不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
因数与倍数单元教学反思篇四
本节课是在学生已经学习了一定的整数知识的基础上进行教学的。
课堂中,我首先让学生理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的`除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。
其次,厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。
本节课的不足之处:
1、练习设计容量少了一些,导致课堂有剩余时间。
2、对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。
因数与倍数单元教学反思篇五
倍数和因数本教材与原教材大不相同。在旧教材中,首先确立了除法的概念,然后在此基础上认识了因子倍数。目前,在不知道划分的情况下,直接识别倍数和因子。数学中的“初始概念”通常很难教授。这部分信息是学生第一次很难掌握的。首先,这个名字相对抽象,在现实生活中不常接触。对于这样的概念教学,学生要真正理解、掌握和确定它,需要一个长期的消化和理解过程。
在本课程中,我充分体现了学生是主体,为学生的探索和发现提供了充足的时间和空间,并提供了适当的指导。同时,为了提高课堂教学的有效性,我在本课程的教学中体现了自主性、主动性、合作性和亲和力,做到了以下几点:
(一)操作实践,实例内化,对倍数和因子的理解
我创造了一个有效的数学学习环境,将数字与形状结合起来,并将抽象化为直觉。首先,让学生操作,将12个小正方形放入不同的矩形中,然后让学生写出不同的乘法公式,从而得出因子和倍数的含义。这样,在学生已有知识的基础上,从动手操作到直观感知,概念的揭示突破了从抽象到抽象,从数学到数学,使学生能够独立体验数与形的结合,然后形成要素和倍数的含义。使学生初步建立“因素与多元”的概念。这样,我们就可以充分学习、利用和挖掘教材,利用学生已有的数学知识,引出新的知识,减缓难度,效果良好。
(ii)自主探究、意义建构、发现倍数和因素
整个教学过程试图反映学生是学习的主体,教师只是教学活动的组织者、指导者和参与者。在整个课堂上,教师总是为学生营造一种轻松的学习氛围,让学生自主探索,学习和理解倍数和因子的意义,探索和掌握寻找一个数的倍数和因子的方法,引导学生满口独立获取知识,手和脑。
新课程提出了合作学习的学习方式。多元合作教学不仅能使学生在合作中表达自己的观点、参与讨论、获取知识、发现特色,还能培养学生的合作学习技能,初步形成合作与竞争意识。
因数与倍数单元教学反思篇六
1、对比新版教材知识设置与传统教材的区别。有关数论的这部分知识是传统教学内容但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别1新课标教材不再提“整除”的概念也不再是从除法算式的观察中引入本单元的学习而是反其道而行之通过乘法算式来导入新知。2“约数”一词被“因数”所取代。这样的变化原因何在教师必须要认真研读教材深入了解编者意图才能够正确、灵活驾驭教材。因此我通过学习教参了解到以下信息学生的原有知识基础是在已经能够区分整除与余数除法对整除的含义有比较清楚的认识不出现整除的定义并不会对学生理解其他概念产生任何影响。因此本教材中删去了“整除”的数学化定义。
2、相似概念的对比。1彼“因数”非此“因数”。在同一个乘法算式中两者都是指乘号两边的整数但前者是相对于“积”而言的与“乘数”同义可以是小数。而后者是相对于“倍数”而言的与以前所说的“约数”同义说“x是x的因数”时两者都只能是整数。2“倍数”与“倍”的区别。“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时运用的方法与“求一个数的几倍是多少”是相同的只是这里的“几倍”都是指整数倍。
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围因此对于学生和第一接触的印象是没有什么可以探究和探索的要求而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内与小数无关与分数无关与负数无关虽没学但有小部分学生了解。同时强调——非0——因为0乘任何数得00除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法让学生清晰明确。因此用直接导入法先复习自然数的概念再写出乘法算式3×4=12说明在这个算式中3和4是12的因数12是3和4的倍数。
2、在进行延续性教学中可以让学生探究怎么样找一个数的因数和倍数在板书要讲究一个格式与对称性这样在对学生发现倍数与因数个数的有限与无限的对比再就是发现一个数的因数的最小因数是1最大因数是其本身。
因数与倍数单元教学反思篇七
1、出示12个小正方形。
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法:
12×1=12
6×2=12
4×3=12
4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。
7、说一说
(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。
3、5、18、20、36
因数与倍数单元教学反思篇八
本单元的重点是让学生掌握因数、倍数、质数、合数等概念,以及它们之间的联系和区别,内容较为抽象,为让学生理清各概念间的前后承接关系,达到融会贯通的程度,在学习《因数和倍数》这节课时,我注意做到以下几点:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了。因此,教学时,我引导学生观察生活中的情景图引出乘法算式2×6=12,让学生在多说中体会、理解乘法算式中两数之间的因数与倍数的关系。学生在交流中轻松地理解了两数之间因数与倍数之间的关系,同时引出12的所有因数,让孩子感受到用乘法算式找一个数的因数的方法,为后面学习找一个数的因数做好铺垫。
在学习找一个数的因数时,让孩子们动脑思考,小组合作中探究方法,孩子们想出的方法很多,充分发挥了他们智慧,然后在老师的引导中优化了方法,孩子们在体验中逐步掌握了方法,学得深刻,方法熟练。
教学中,注重学生的动脑思考、观察,让学生在自主的探究学习中表达自己的想法,通过一些特殊的例子,引导学生用数学的语言总结概括一些概念,逐步形成从特殊到一般的归纳推理能力。
倍数和因数教学反思8
《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。
这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。