范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
最小公倍数的教学反思不足之处篇一
核心提示:今天练习了公倍数和最小公倍数的内容,一个重要的知识点,当两个数大数是小数的倍数时,大数就是这两个数的最小公倍数,当两个数只有公因数是1的,最小公倍数就是这两个数的乘积。教学练习四第8题。提醒学生:每...
今天练习了公倍数和最小公倍数的内容,一个重要的知识点,当两个数大数是小数的倍数时,大数就是这两个数的'最小公倍数,当两个数只有公因数是1的,最小公倍数就是这两个数的乘积。
教学练习四第8题。提醒学生:每隔6天去一次是指7月31日以一,下一次训练日期是8月6日;要求他们两次相遇的日期,实际上就是求6和8的最小公倍数。
最小公倍数的教学反思不足之处篇二
教学实录:
一.公倍数的意义
学生思考后回答。
生:能铺满边长6厘米的正方形,因为边长6的正方形面积是36平方厘米,长方形面积是6平方厘米,36÷6=6个,用6个正好铺满。
师:那边长8厘米的正方形为什么不能正好铺满?
学生沉默。
师:我们接着他刚才的想法往下想。
生:正方形面积64平方厘米,64÷6=10……4,还多4平方厘米。
师:好的,还有别的想法吗?
学生沉默,教师引导。
师:我们一起来想想这6个长方形怎么铺,正好铺满边长6厘米的正方形
生:每排2个,摆3排。
生:6÷3=2个,6÷2=3个
生:12、18、24、36……
师:这些数有什么特点?
生:既是2的倍数,又是3的倍数。
师揭题。像6、12、18、24、36……既是2的倍数又是3的倍数,它们是2和3的公倍数。现在再来说说为什么能正好铺满边长6厘米的正方形而不能铺满边长8厘米的正方形。
生:6是2和3的公倍数,8是2的倍数但不是3的倍数。(师:所以……)8不是2和3的公倍数。
二.找公倍数的方法
师:找出6和9的公倍数有哪些?
学生独立思考如何找公倍数,学生交流。
生:6和9的公倍数有18、36、54、72……
师:你是怎么找的?
生:先找18,再十位上加2,个位上加2……
师:这方法是能找出公倍数来,可总觉得不太保险,会不会有遗漏,有没有其他方法了。
生:找出6和9的倍数,再从中找出一样的。
师生共同找,(略)
师:这方法是保险了,但有点烦,有简单点的方法了吗?
学生思考。
生:找9的倍数,再从中找出6的倍数,因为先找6的倍数的话,比如第一个是6,比9小,肯定不是9的倍数。
师:大家觉得这方法怎样。老师觉得至少有两个优点,第一,比刚才的方法简单了,而且不会遗漏。第二,大家想,在一定的范围里,9的倍数可定比6的倍数要…(少)这样,考虑的数也就……(少)
师生一起找,先找9的.倍数再找6的倍数。
生:还有方法,先找9的倍数,第一个是9,第二个是18,18是6和9的最小公倍数,那么以后的公倍数就只要依次加18.
师:刚才他提到的最小公倍数大家懂吗?
生:就是公倍数中最小的那个
师:哦。那我们来一起试试看。
三.教学韦恩图(略)
教后反思:
本课教学中,除了开始部分由于教学准备不足,学生思维有点跟不上外,在接下来的教学中,能有效的引导学生围绕着为什么能铺满,还能铺满边长几厘米的正方形,丰富学生对公倍数的感性认识,并在此基础上,抽象出公倍数的意义。能围绕着找公倍数的方法展开方法优劣的比较,让学生从中较为主动地自主学习有关公倍数的一系列知识点。本课上完后的体会是:一是教师的问题不宜过多,要有重点的设置几个即可,有益于学生在课堂学习总思维的连贯性和思考的深度。二是备课除了思路清晰外,一些细小的地方还应完善做得充分点。
五年级《公倍数和最小公倍数》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
最小公倍数的教学反思不足之处篇三
1、一个数最小的倍数是它的本身,没有最大的倍数。
2、一个数倍数的个数是无限的。
3、怎样找一个数的倍数?
其次,在引入的环节,我用学生喜欢的故事和动画来展示:在美丽的洪泽湖边上有一个小渔村,村里住着一老一少两个渔夫。今年,他们从4月1日一起开始打鱼,并且每个人都给自己定了一条规矩。老渔夫说:“我连续打3天鱼要休息一天。”年轻渔夫说:“我连续打5天鱼要休息一天。”有一位城里的朋友想趁他们一起休息的.日子去看望他们,那么在这个月里,他可以选哪些日子去呢?你会帮他把这些日子找出来吗?听了这个故事之后,学生积极性很高。
学生对公倍数的个数是有限的还是无限的,使用省略号方法学生没有掌握好。如:6和9的公倍数后面要用省略号,30以内6和9的公倍数后面要不用省略号。
最小公倍数的教学反思不足之处篇四
公因数和公倍数的学习是五下教材的两个重要概念,新教材对这部分内容作了化解难点,个别击破的办法,如何教学好这节内容,我在这次的新教材教学实践中作了如下尝试。
倍数——公倍数——最大公倍数
这一单元主要是让学生在操作与交流活动中认识公倍数与最小公倍数,公因数与最大公因数,并激发学生的学习兴趣,培养学生的探究能力,因此在教学中我认为应特别注重概念间的系列反应,如倍数和因数是前面所学内容,新内容要在此基础上生根,必须复习旧知,联系生活,学习新知,围绕“公”,理解公倍数与公因数的概念,最小公倍数则通过实际生活中如第25页公交发车问题或参加游泳问题,来引发就是求最小公倍数来解决问题,最大公因数则通过长18厘米,宽12厘米的长方形来分最大的小正方形得到,教学中,我们必须注重学生对概念间的关系理解,从而形成条理化。
从而想到18的因数有哪些,12的因数有哪些,18和12的公因数即为剪下的正方形的边长,而6则是比较特别的一个最大的数,即为最大公因数,到这里实际解决了例4。
再次提问:因数是怎么求的?公因数是什么意思?最大公因数是什么意思?怎么求两个数的最大公因数。回到教材,自学教材,思考问题。 3、 有效使用教材与教辅资料,提高达成性。
什么时候阅读教材,例题等主体部分看不看?练习部分怎么用?都值得我们每节课去揣摩和研究。
学生陌生,共同探讨之后又让学生回到教材,仔细阅读教材,寻找教材重点、难点,作好标记,可以当堂又经过了初步的复习。
书后的练一练以及练习五1-5题,由浅入深,重点训练学生寻找最大公因数的方法,无需改编,原题照用,可以直接在教材上作练习,当堂巩固所学新知,结合练习适当进行拓宽与技能的强化,可以直接实现当堂清。
最小公倍数的教学反思不足之处篇五
核心提示:本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发...
本节课教学公倍数和最小公倍数,是在学生理解了倍数概念的基础上教学的。在例1的教学中,我首先让学生用长3厘米、宽2厘米的长方形纸片来分别铺边长是6厘米和8厘米的正方形进行操作,然后通过一系列的讨论,引发学生进行进一步思考其中的`原因,得出因为6既是2的倍数,又是3的倍数,这个长方形纸片就能正好把它铺满;8虽然是2的倍数,但不是3的倍数,则不行。学生具体感知公倍数的含义,揭示公倍数的概念。在教学例2找6和9的公倍数,对于学生而言并不是很难,主要是方法上的指导。
尤其是用集合图表示6和9的公倍数对于学生来讲是陌生的,所以我在教学时,就直接展示集合图,让学生看图回答,这样可以比较容易地帮助学生认识这种集合图的形式,了解其内容,从而理解6的倍数、9的倍数及6和9的公倍数三者之间的关系,并且强调因为一个数的倍数的个数是无限的,所以几个数的公倍数的个数也是无限的,后面应该用省略号。
纵观这节课,学生学得还是比较轻松,掌握的较好。