在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
八上数学教学设计人教版篇一
教学目标:
1、知道一次函数与正比例函数的意义.
2、能写出实际问题中正比例关系与一次函数关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于一次函数与正比例函数概念的理解.
教学难点:根据具体条件求一次函数与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成()的形式.一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的一次函数.特别地,当b=0时,一次函数就成为(是常数,)
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
分析:y与x成正比例
解:(1)(2)(升)
例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的cd随身听(价值1680元)
(1)列出小丸子的银行存款(不计利息)y与月数x的函数关系式;
(2)多长时间以后,小丸子的银行存款才能买随身听?
分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱
例3、已知函数是正比例函数,求的值
分析:本题考察的是正比例函数的概念
解:
4、小结
由学生对本节课知识进行总结,教师板书即可.
5、布置作业
书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论
八上数学教学设计人教版篇二
知识与技能
1、了解立方根的概念,初步学会用根号表示一个数的立方根.
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
过程与方法
1让学生体会一个数的立方根的惟一性.
2培养学生用类比的思想求立方根的能力,体会立方与开立方运算的互逆性,渗透数学的转化思想。
情感态度与价值观
通过立方根符号的引入体会数学的简洁美。
重点
立方根的概念和求法。
难点
立方根与平方根的区别,立方根的求法
前面已经学过了平方根的知识,由于平方根与立方根的学习有很多相似之处,所以在教学设计上,主要还是采取类比的思想,在全面回顾平方根的基础上,再来引导学生进行立方根知识的学习,让学生感觉到其实立方根知识并不难,可以与平方根知识对比着学,这样可以克服学生学习新知识的陌生心理。在学习方法上,提倡让学生在反思中学习,在概念的得出,归纳性质,解题之后都要进行适当的反思,在反思中看待与理解新知识和新问题,会更理性和全面,会有更大的进步。
教学环节问题设计师生活动备注
设这种包装箱的边长为xm,则=27这就是求一个数,使它的立方等于27.
因为=27,所以x=3.即这种包装箱的边长应为3m
归纳:
立方根的概念:
创设问题情境,引起学生学习的兴趣,经小组讨论后引出概念。
通过具体问题得出立方根的概念
探究一:
根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?
因为(),所以0.125的'立方根是()
因为(),所以-8的立方根是()
因为(),所以-0.125的立方根是()
因为(),所以0的立方根是()
一个正数有一个正的立方根
0有一个立方根,是它本身
一个负数有一个负的立方根
任何数都有唯一的立方根
一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。.
探究二:
因为所以=
因为,所以=总结:
利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
八上数学教学设计人教版篇三
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题
平行四边形的判定方法及应用
阅读教材p44至p45
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(5)你还能找出其他方法吗?
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
八上数学教学设计人教版篇四
调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数。
例如:求一组数据3,2,3,5,3,1的众数。
解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。
又如:求一组数据2,3,5,2,3,6的众数。
解:这组数据中2出现2次,3出现2次,5,6各出现1次。
所以这组数据的众数是2和3。
【规律方法小结】
(1)平均数、中位数、众数都是描述一组数据集中趋势的量。
(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。
(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。
探究交流
1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?
解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。
总结:
(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
(3)中位数的单位与数据的单位相同。
(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。
课堂检测
基本概念题
1、填空题。
(1)数据15,23,17,18,22的平均数是;
(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。
基础知识应用题
2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。
八上数学教学设计人教版篇五
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
2、范例讲解
(学生尝试练习后,教师讲评)
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)
2、解分式方程的步骤、
巩固练习:p1471t,2t、
课堂小结:解分式方程的一般步骤
布置作业:见作业本。
八上数学教学设计人教版篇六
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。
2、会求一组数据的极差。
1、重点:会求一组数据的极差。
2、难点:本节课内容较容易接受,不存在难点.
从表中你能得到哪些信息?
比较两段时间气温的高低,求平均气温是一种常用的方法.
这是不是说,两个时段的气温情况没有什么差异呢?
根据两段时间的气温情况可绘成的折线图.
观察一下,它们有区别吗?说说你观察得到的结果.
本节课在教材中没有相应的例题,教材p152习题分析
问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。