作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
一元一次方程教案人教版篇一
学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析
对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:
1.经历探索有理数加法法则的过程,理解有理数的加法法则;
2.能熟练进行整数加法运算;
3.培养学生的数学交流和归纳猜想的能力;
4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
三、教学过程设计
本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。
(一)复习引入,提出问题
活动内容:
1.复习提问:
(1)下列各组数中,哪一个较大?
(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为。
活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。
2.提出问题:
某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分。
如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.
(1)计算(-2)+(-3).
在方框中放进2个和3个:
因此,(-2)+(-3)=-5.
用类似的方法计算(2)(-3)+2
(3)3+(-2)
(4)4+(-4)
思考:两个有理数相加,还有哪些不同的情形?举例说明。
引导学生列举两个正数相加,如3+2,一个数和零相加,如0+(-4),4+0。
活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。
活动的实际效果:实际问题情境为学生营造了良好的学习氛围,利于他们积极探究。
(二)活动探究,猜想结论:
学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。
对“一起探究”,教师可引导学生按以下步骤思考:
1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。
3、从中归纳概括出规律
在学生探究的基础上,教师引出规定的加法法则。
在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。
活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。
(三)验证明确结论:
例1计算下列算式的结果,并说明理由:
(1)180+(-10)(2)(-10)+(-1);
(3)5+(-5);(4)0+(-2)
活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值。
活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。
(四)运用巩固:
活动内容:
1.口答下列算式的结果
(1)(+4)+(+3);(2)(-4)+(-3);
(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0
(7)0+(+2);(8)0+0.
活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。
2.请同学们完成书上的随堂练习:
(1)(-25)+(-7);(2)(-13)+5;
(3)(-23)+0;(4)45+(-45)
全班学生书面练习,四位学生板演,教师对学生板演进行讲评。
活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。
活动的实际效果:通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:
活动内容:师生共同总结。
2.有理数加法法则及其应用。
3.注意异号的情况。
活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。
活动的实际效果:学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。
一元一次方程教案人教版篇二
1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。
2、理解什么是一元一次方程。
3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。
【导学指导】
一、温故知新
1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?
答: 叫做方程。
一元一次方程教案人教版篇三
如在解方程30%x+70%(200-x)=200×70%中,在去分母时,方程两边都乘以100,化去%得:
30x+70(200-x)=200×70,有部分学生就提出疑问,为什么在200那里不乘以100?在(200-x)的里面又不乘以100呢?为了能让学生明白,我想是否要将原方程变形为,然后再各项乘以100,写成,最后化去分母。
又在解方程中,怎样去分母呢?最小公倍数是什么呢?学生是有疑惑的,当分母是小数时,找最小公倍数是困难的,我们要引导学生:
七年级数学(上)3.3解一元一次方程(二)-去括号(教案).doc
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
一元一次方程教案人教版篇四
课题:3.2.4从古老的代数书说起一元一次方程的讨论(1)
教学目标
1、经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。
2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。
教学难点探究实际问题与一元一次方程的关系。
知识重点建立一元一次方程解决实际问题
教学过程(师生活动)
设计理念
创设情境提出问题信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。
出示教科书80页的例2;观察下列两种移动电话计费方式表:
全球通神州行
月租费50元/月0
本地通话费0.40元/分0.60元/分
设计以下问题:
1、你能从中表中获得哪些信息,试用自己的话说说。
2、猜一猜,使用哪一种计费方式合算?
3、一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?
4、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?本例是一道与生活相关的'移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。
理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。
探索分析
解决问题学生充分交流讨论、整理归纳
解:1、用“全球通”每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用“神州行”不收月租费,根据累计通话时间按0.60元/分收通话费。
2、不一定,具体由当月累计通话时间决定。
3、全球通神州行
200分130元120元
300分170元180元
0.6t=50+0.4t
移项得0.6t-0.4t=50
合并,得0.2t=50
系数化为1,得t=250
以表格的形式呈现数据,简单明了,易于比较。
通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。
综合应用
学生练习,教师巡视,指导,讨论解是否合理
开放题
课堂小结
知识梳理小组讨论,试用框图概括“用一元一次方程分析和解决实际问题”的基本过程
学生思考、讨论、整理。
实际问题题
列方程
一元一次方程教案人教版篇五
知识目标:经历解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程, 进一步理解并掌握如何去分母的解题方法。
能力目标:通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力。
1.了解方程的解,解方程的概念;
2.掌握运用等式的基本性质解简单的一元一次方程;
3.经历体会解方程中的转化思想.
一元一次方程教案人教版篇六
2、过程与方法:使同学们了解列出一元一次方程解应用题的方法。
3、情感、态度与价值观:通过对实际问题的解决,体会方程模型的作用,发展分析问题、解决问题、敢于提出问题的能力.
【学习重难点】
重点:列出一元一次方程解有关形积变化问题;
难点:依题意准确把握形积问题中的相等关系。
【导学过程】
一、预习准备
1、长方形的周长= ;面积=
2、长方体的体积= ;正方体的体积=
3、圆的周长= ;面积 =
4、圆柱的体积=
5、阅读教材:第3节《 应用一元一次方程——水箱变高了》
二、合作交流
6、理解解应用题的关键是找等量关系列方程
将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20
厘米的“矮胖”形圆柱,高变成了多少?