在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
方程的意义教学评价设计与反思篇一
“义务教育课程标准实验教科书数学”五年级上册p53~54方程的意义
二,教材分析
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的空间,是数学思想方法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习“解方程”的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.
三,教学目标
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想方法及价值,发展抽象思维能力和增强符号感.
3,让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.
四,教学重点,难点
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.
教学难点:正确寻找等量关系列方程.
五,教学设想
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式又有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时又要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.
六,教学准备:课件,天平,实物若干等
七,教学过程:
课前准备:利用学具(简易天平)感受天平平衡的原理.
教学过程
学生活动
设计意图
一,创设情景,建立表象
1.认识天平.
2.同学们通过课前的实际操作你发现要使天平平衡的条件是什么
(天平两边所放物体质量相等)
3.用式子表示所观察到的情景:
情景一:导入等式
(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝
300+150=450
(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:从不平衡到平衡引出不等式与含有未知数的等式
(1)
在杯子里面加入一些水,天平会有什么变化
要使天平平衡,可以怎么做
情景三:看图列等式
(1)
x+y=250
(2)
536+a=600
直观认识天平
回忆课前操作实况理解平衡原理
观察情景图,先用语言描述天平所处的状态,再用式子表示
观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前“玩学具”已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性又进一步让学生体会等式的含义.
通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时又培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).
方程的意义教学评价设计与反思篇二
本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。
1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。
2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。
3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。
学情分析
本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。
教学目标
1、能利用天平,通过动手操作理解等式的意义。
2、结合具体实例和情景,初步理解方程的意义,会用方程表达简单的等量关系。
3、培养保护动物的意识,感受数学与生活的密切联系,提高学习数学的兴趣。
教学重点和难点
重点:方程意义的理解
难点:建立等式、方程的概念
方程的意义教学评价设计与反思篇三
〖教材分析〗:
《方程》是北师大版小学数学教材四年级下册第七单元《认识方程》中的第三课时,本节课是在学生学会用字母表示数的基础上进行教学的,是学生学习代数初步知识的开始。教材运用“天平称物”等三个问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义,会用方程表示简单的数量关系。这样设置,符合小学生的心理发展规律和认知特点,也符合《数学课程标准》第二学段的目标要求。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。
〖学情分析〗:
本节课方程对学生来说是一块崭新的知识点,对于四年级的学生来说,理解起来也有一定的难度。在学习方程之前,学生已学过整数四则运算、运算律及用字母表示数。学生学习了“用字母表示数”,对于方程,借助天平来理解不会很困难,重点是让学生用方程表示简单情境中的等量关系。因为本节课是一节小学阶段很重要和有价值的方程课,学生习惯用算术思维考虑问题,这是学生长期养成的学习习惯,算术思维是逆向思维,还要难一些,而且这个逆向思维肯定是由顺向的思维过渡过去的,涉及的基础知识也比较多,内容容量比较大,尽管学生年龄层次比较低,但是仍希望在本节对学生从正确构建到运用都恰倒好处进行引导,预设将可能产生的问题和探求解决方法,尽量在一节课内完成,形成一个有价值和有效的教学链。
学习困难:能根据已有信息列方程,表示具体生活情景中的等量关系和抽象概括能力。
教学过程:
一、课前谈话。
师:同学们玩过翘翘板的游戏吗?跷跷板这个游戏是怎么玩的呢?
师:看来跷跷板不仅好玩,还能比较出两个人的轻重关系。
二、学习新课
(一)、认识天平。
师:在我们的数学上,也有一种和跷跷板类似的工具,出示图片,你们认识吗?(天平)关于天平,你知道哪些知识呢?课前我们做了一些预习,谁来说一说。(a.称物体质量,b.表示两个物体质量之间的关系)(师评价:你知道的真多。)
师:现在就让天平和我们一起进入今天的学习之旅
(二)、合作探究
1、引导学生感受相等关系的量
师:拿出老师发给你们的a作业纸,先读读淘气的要求。
师:你明白了吗?那我们开始吧!
(1)、
从图中我知道:
(2)、
从图中我知道:
你能用一个式子来表示吗?
(写完式子,教师要再次问一问式子表示的意思,特别是=的意思)
(3)、
从图中我知道:
如果樱桃的质量用x表示,你能用一个式子来表示吗?
(4)、思考:上面3副图有什么相同点?
师:观察这3个情境,它们有什么共同之处吗?(2-3名同学回答)
(5)、教师小结:这些情境都反映了一种两个量相等的的关系,这种相等的关系叫就等量关系,等量关系不仅天平上有,在我们的生活中也有很多。我们先来欣赏一个小故事,里面也藏着一个等量关系,我们一起来找找吧!
师:这就是著名的《曹冲称象》的故事,你找到里面的等量关系了吗?
2、学生能从生活情景中找等量关系,并会用式子表示自己找到的`等量关系。
师:还想找吗?拿出你的b作业纸,这些情境也藏着等量关系,找之前,还是先读读淘气的要求吧。
师:要求明白了,我们开始找吧。
(1)、
我从图上找到的等量关系:
如果用y表示每块月饼的质量,那么请你一个式子表示这个等量关系:
(2)、
刚好倒满两个热水瓶和一杯
我从图上找到的等量关系:
如果用z表示一个热水瓶的盛水量,请你用一个式子表示等量关系:
3、
我从图上找到的等量关系:
我用式子表示的等量关系:
(4)、师:那个小组来分享一下自己的看法?
(5)、师:观察我们列出的这些式子,他们有哪些相同的特点?(小组交流讨论)
3、教师小结:像这样表示相等关系的式子我们把它叫做等式。如果把这些等式进行分类,你会怎么分,先想一想,再分一分:
学生汇报。
4、教师总结:像x+5=10、4y=380这样含有未知数的等式叫做方程。
师:你能和同位说说什么是方程吗?指名说什么是方程,教师板书,生齐读。
师:你认为在这句话里,哪些需要重点读呢?那我们就按这样的要求读一读。
5、师:老师也找了一些式子,它们是不是方程呢?
练习判断方程
6、师:我们再来看这些方程,这些方程是怎么一步步列出来的呢?(你说的非常清楚:1、观察情景,2、找等量关系,3、根据等量关系列出方程。)
教师小结:那我们以后列方程的时候就可以按照这种步骤来写了。
三、练习巩固:智创三关
1、第一关:我学我运用,看图列方程。
课件依次出现数学书上练一练1、2、4、5、6。
2、第二关:数学小博士:你知道吗?
师:方程看似简单,但它的产生也经历了一个漫长的过程。现在我们来了解一下有关方程的历史文化:早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
师:听了这段话,你有什么感受呢?看来在我们的数学史上,每一项成就的取得,都经历了漫长而复杂的形成过程。同学们,只要我们愿意积极用脑,肯于钻研,我们一定也会有所成就的。
3、第三关:我创意我精彩:任选一个方程编(或画)一个故事。
师:下面我们来一个思考无限创意大赛,任选下面一个方程编(或画)一个故事,在小组内说一说,画一画。
20+x=100
2x=100
师:谁来分享一下自己的创意。
四:教师总结
师:同学们编的画的太好了,只有对方程的准确理解,才会有这么贴切奇妙的创意,下课之后我们可以把这奇妙的创意带回家给自己的和自己的爸爸妈妈一起分享。
方程的意义教学评价设计与反思篇四
教学目标:
1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。
教学重点:方程的意义。
教学难点:正确区分等式和方程这组概念。
教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。
教学过程:
一、课前谈话:
同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的`请举手?
这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)
当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。
二、新授
1、玩一玩
谁想上来玩?
你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)
再在左边放一个10克的法码,这时天平怎么样?(平衡了)
看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?
给你们5分钟的时间,比一比哪个小组又快又好。
哪个小组把自己所写的式子拿上来展示出来。
(有不一样的都可以拿上来)
2、分类
你们对这些式子满意吗?
谁来说说你们是按照什么标准分的?
1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。
2、把学生写的式子分成两堆,让学生分]
师:你能把这一种再分成两类吗?怎么分?指名板演。
你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)
象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。
3、理解概念
练习:你能举一个方程的例子吗?学生在本子上写一个。
回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)
4、巩固概念
老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)
通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用x表示。
(2)未知数不一定只有一个。
一个方程,必须具备哪些条件?
5、比较辨析
师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?
如果老师说,方程一定是等式。对吗?(结合板书交流)
等式也一定是方程。(结合板书交流)
也就是说:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)
三、巩固
师:同学们的图非常形象地表示出了方程和等式之间的关系,
1、这些图你能用方程来表示吗?
师:这里还有一些有关我们学校的信息,谁来读一读。
3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)
四、小结
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?
方程的意义教学评价设计与反思篇五
教学内容:
人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:
理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
教学过程一、呈现情境,建立方程
1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?
提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)
2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。
3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)
(对不是方程的式子,一定要学生从本质上解释为什么不是方程)
课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。
设计意图:
动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。