对某一单位、某一部门工作进行全面性总结,既反映工作的概况,取得的成绩,存在的问题、缺点,也要写经验教训和今后如何改进的意见等。总结怎么写才能发挥它最大的作用呢?以下是小编为大家收集的总结范文,仅供参考,大家一起来看看吧。
初中数学应用题公式总结归纳篇一
在同一平面内:
四条边都相等且一个角是直角的四边形是正方形。
有一组邻边相等的矩形是正方形。
有一个角为直角的菱形是正方形。
四边形对角线相等且互相垂直平分。
知识拓展:正方形和菱形的关系—有一个角是直角的菱形是正方形。
初中数学应用题公式总结归纳篇二
全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
注重课堂学习
在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
夯实基础知识
在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
注意知识的迁移
课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
复习形成梯度
如果说第一阶段是中考复习的基础,是重点,侧重了双基训练,那么第二阶段的复习就是第一阶段复习的延伸和提高,这个阶段的练习题要选择有一些难度的题,但又不是越难越好,难题做的越多越好,做题要有典型性,代表性,所选择的难题是自己能够逐步完成的,这样才能既激发自己解难求进的学习欲望,又能使自己从解决较难问题中看到自己的力量,增强学习的信心,产生更强的求知欲望。
注重解题方法
基础知识就是初中数学课程中所涉及的概念、公式、公理、定理等。要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。每年的中考数学会出现一两道难度较大,综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,待定系数法、判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应该熟练掌握。
学会运用
数学思想的进一步形成和继续培养是十分重要的,因为它的应用是十分广泛的。比如方程思想、特殊和一般的思想、数形结合的思想,函数思想、分类讨论思想、化归与转化的思想等,我们要加深对这些思想的深刻理解,目前要多做一些相关内容的题目;从近几年中考情况看,最后的“压轴题”往往与此类题型有关,不少同学解这类问题时,要么只注意到代数知识,要么只注意到几何知识,不会熟练地进行代数知识与几何知识的相互转换。
综合运用
通过对课本典型例题、习题的有机演变和拓展延伸,让自己在参与探究中提高应变能力和创新能力。以课本典型例题、习题为题源进行一题多解、一题多变的训练是落实新课程理念、强化数学创新教学的重要途径。课本上的某些例(习)题看似平淡无奇,但如果我们以此为蓝本,改变其条件或结论,运用不同的知识和手段,编拟出形式新颖的题目,这对于提高自己的认识层次、强化探索创新和应变迁移能力,是有很大帮助的。因此,在这个阶段,我们同时还要做到能把各个章节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。纵观中考数学试题中对能力的考查,除了考查运算能力、空间想象能力和逻辑思维能力以及分析和解决纯数学问题的能力外,又强化了阅读理解能力、探索创新能力和数学应用能力,以及对同学们的情感、意志、毅力、价值观等非智力因素的考查,就必然使中考数学试题对能力的考查进入一个新的阶段。
初中数学应用题公式总结归纳篇三
这类问题反映在三个方面:
1、对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
2、对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好地将学到的知识点与解题联系起来。
二、及时总结各种题型
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动。”
这个问题如果解决不好,在进入初二、初三以后就会发现,有一部分同学天天做题,可成绩不升反降。
其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。
久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄得一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
对于不同的题目,我们有不同的解题技巧,铁打的技巧流水的题,只要咱们掌握了技巧,那就可以人挡杀人,佛挡杀佛,如果掌握不了技巧,那就悲剧了,变成人挡人杀你,佛挡佛杀你。
三、一定要利用好错题和自己曾经不会做的题目。
我们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。做题目,有两个重要的目的:
1、将所学的知识点和技巧,在实际的题目中演练。
2、找出自己的不足,然后弥补它。
这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
其实我们最大的问题就是总会忽略自己的问题,却不知道,把我们不会的题目弄会了,我们就进步了。
许多人喜欢狂做自己会做的题目,去体验一种居高临下,庖丁解牛的感觉,碰见自己不会了,立马就开始退缩,最后庖丁被牛解了。
四、不懂的及时问
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:
1、对该问题的重视不够,不求甚解。
2、不好意思,怕问老师被训,问同学被同学瞧不起。
抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。
现在的同学自尊心都是很强的,总感觉向别人问问题是一种示弱的表现,所以自己要跟这道题目死磕,后来两败俱伤—他浪费了大把的时间,题目最后也被他撕碎了。
五、在考试中提升心态和考试技巧
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:
1、考试心态不够好,容易紧张。
2、考试时间紧,总是不能在规定的时间内完成。
心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。
初中数学应用题公式总结归纳篇四
矩形是平行四边形的一种,所以也具备着平行四边形的相关性质。
1、矩形的4个内角都是直角;
2、矩形的对角线相等且互相平分;
3、矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4、矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。
5、矩形具有平行四边形的所有性质
6、顺次连接矩形各边中点得到的四边形是菱形。
图形的性质都是从外形到内在的顺序说明的。
初中数学应用题公式总结归纳篇五
2、推论 三角形两边的差小于第三边
3、三角形内角和定理 三角形三个内角的和等于180°
4、推论1 直角三角形的两个锐角互余
5、推论2 三角形的一个外角等于和它不相邻的两个内角的和
6、推论3 三角形的一个外角大于任何一个和它不相邻的内角
7、全等三角形的对应边、对应角相等
8、边角边公理 有两边和它们的夹角对应相等的两个三角形全等
9、角边角公理 有两角和它们的夹边对应相等的两个三角形全等
10、推论 有两角和其中一角的对边对应相等的两个三角形全等
11、边边边公理 有三边对应相等的两个三角形全等
12、斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等
13、定理1 在角的平分线上的点到这个角的两边的距离相等
14、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
15、角的平分线是到角的两边距离相等的所有点的集合