范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆锥的体积教学反思博客篇一
1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。
(2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。
(3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。
(4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。
2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。
3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。
4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。
圆锥的体积教学反思博客篇二
《圆锥的体积》一课的教学,是在掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
1、初步掌握圆锥体积的计算公式,并能运用公式正确地进行计算。2、通过圆锥体积公式的推导,培养学生动手操作与小组协作的能力。
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
1、让学生经历发现、提问、解决问题的全过程
复习有关圆柱体积知识后,教师出示一堆煤:将这堆煤倒在地上,会变成什么形状情境导入。教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
2、让学生在现实情境中体验和理解数学
圆锥的体积教学反思博客篇三
这节课是六年级圆柱和圆锥的内容,主要是求圆锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱相同,采用“转化”的思想。因而这节课首先复习圆柱的体积公式及推导方法,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的.严密性,感受数学的内在魅力,激发学生对数学的热爱。
学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。
圆锥的体积教学反思博客篇四
该学习“圆锥的认识和体积”这部分知识了,想到在学生的生活中,纯圆锥的物体并不多见,所以这样安排本部分内容的教学。
第一节课带领学生做圆锥,画圆——剪圆——再剪出圆心角不同的扇形——把两条半径无缝隙的粘住,放在桌上,一个圆锥成型了,如果你想粘上底面也可以,可是得知道底面的半径啊!(拓展怎样知道扇形的半径和圆心角的度数,求出圆锥底面半径的大小)
学生自己做出来的圆锥,对它的认识肯定是比较深刻的——圆锥由一个底面和一个曲面围城,底面是圆,侧面展开是一个扇形,还有强调对圆锥的'高的理解。直角三角形沿一条直角边所在的直线旋转可以得到一个圆锥,让学生试一试,想象一下。
第一节课圆锥的认识,因为加上了让学生动手制作这一环节,教学效果出奇的好,也为下一节课做好的铺垫。
圆锥的体积教学反思博客篇五
《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。
高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。
1.通过学生动手操作实验发现等底等高的圆锥体积之间的关系,从而得出圆锥体积的计算公式,并能运用所学知识解决实际问题。
2.培养学生的动手操作能力和探究意识,发展学生的空间观念。
3.通过生活中的故事,培养学生良好的思想品德。
1.圆锥的体积公式的推导过程
2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。
《数学课程标准》中要求“在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。
数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有“等底等高”的圆锥和圆柱体积才能有3倍的关系。引导学生由表及里,层层逼近的过程,进行深的信息加工。
在教学中,我积极鼓励学生独立思考,自主探索,小组合作交流,通过小组合作完成实验过程,实验过程中培养学生敢于质疑,乐于交流与合作的能力。
夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。
(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)
(2)同组的学生做完实验后,进行交流
(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)
同学们尝试一下,用v、s、h、表示圆锥的体积公式?(生独立写公式)
工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)
汇报:(1)沙堆底面积3.14×(4÷2)2
=3.14×4
=12.56(平方米)
(2)沙堆的体积1/3×12.56×1.2
=4.19×1.2
≈5.02(立方米)
答:这堆沙子大约5.02立方米?
1)一个圆柱体积是10立方米,和它等底等高的圆锥体积是()立方米。
2)一个圆柱钢材能溶铸成()个与它等底等高的圆锥体。
1)圆锥体积是圆柱体积的1/3。()
2)圆柱体积一定比圆锥体积大。()
3)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2:1()
4)圆锥体积等于和它等底等高的圆柱体积的1/3。()
3、圆锥的底面积是7.8平方厘米,高是2厘米,体积是多少立方米?
通过这节课的学习,你们有哪些收获?
圆锥的体积
1/3
v=1/3sh
例3
工地上有一些沙子,堆起来近似于一个圆锥。它底面直径是4米,高是1.2米。这堆沙子大约多少立方米?(得数保留两位小数)
(1)沙堆底面积3.14×(4÷2)2
=3.14×4
=12.56(平方米)
(2)沙堆的体积1/3×12.56×1.2
=4.19×1.2
≈5.02(立方米)
答:这堆沙子大约5.02立方米?
义务教育课程标准实验教科书教师教学用书
今天上了《圆锥的体积》这节课,反思整堂课的教学,自我感觉较为满意的是以下几点:
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中把生活中的故事引入数学课堂,让学生大胆猜想它们的体积可能会有什么样的关系?使课堂充满生机、乐趣,激发了学生的求知欲,然后让学生借助学具进行实验、探究。事实证明这样教学设计不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
数学不仅是思维科学,也是实验科学。教学中,学生能通过观察、猜测、实验、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式:v=1/3sh。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己的实验结论,培养了学生科学的实验观。
教学中“圆柱和圆锥不等底等高,他们的体积还是三倍的关系吗?”这一教学环节不是预先设计的。它是课堂中随机生成的,却饱含着教师和学生真实的、情感的、智慧的、思维和能力的投入,有互动的过程,气氛相当活跃。在这个过程中既有资源的生成,又有过程状态生成,让学生在实践中进一步明确了:只有等底等高,圆锥的体积才能是圆柱体积的三分之一。总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们不仅收获了知识更体验到了探究成功的喜悦。
1.教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。
2.教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的生活情境,并把这一故事情节贯穿整节课的始终。教学中做到了一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。
3.本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时圆柱体积不是圆锥体积的3倍,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。
4.多样化的数学活动,如实验、交流、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的'喜悦。
5.在数学课堂上教师不失时机的进行德育教育,体现了在学科中“情感态度价值观”的培养,在学科中渗了透德育教育,为数学课堂增添了亮丽的一笔。
6、本节课教师引领学生积极探究新知,学生成为课堂上真正的主人,学生积极参与、自主合作探究知识,实现了学习方式的多样化。课堂上师生互动,注重学生的态度和情感的体验。回归常态教学,教学真实、扎实、朴实,构建了充满生命活力的课堂。
师:夏天,小朋友们玩得大汗淋漓。小雅去“便利超市”购物,在冷饮专柜那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的小林看见了,小林的眼珠咕噜一转,计上心来。他去冷饮专柜里买了一个圆锥形的雪糕。小雅刚张开嘴,满头大汗的小林拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
生:我觉得小雅上当了,小林的雪糕小。
生:公平。
生:我觉得还是不公平,小雅还是吃亏。
生:四个。
生:五个。
生:三个。
师:小雅究竟用几个跟小林怎样交换才公平合理呢?(学生沉默,几秒后有学生举手)生:老师如果知道他们的体积就好办了,可是我们只会求圆柱的体积,不会求圆锥的体积。(学生均点头)
师:你的想法非常好。那圆锥的体积怎样计算呢?大家想知道吗?
生合:想。
师:好,这节课我们就一起来探究一下圆锥的体积这部分知识。(板书)
师:下面,请同学们利用老师提供的实验材料分组操作,自己发现圆柱与圆锥体积间的关系。注意每个学生要先根据老师提供的材料思考实验方法,然后小组讨论拿出最优方案,组员分好工,然后开始实验。
(1)学生分5组操作实验,教师巡回指导。(每组的圆柱和圆锥是等底等高的,各组间的大小不同。教师提示:用沙子做实验的小组往容器里装沙子时注意不要用手使劲压,装满后用尺刮平即可。用水做实验的小组往容器里装水时注意把容器装满。这样能保证实验的科学性。)
(2)同组的学生做完实验后,进行交流
师:下面请各个小组同学汇报你们是怎样实验得出结论的。
(各小组汇报,结论是:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。)
师:各小组的结论都是一样的:圆柱的体积是圆锥体积的三倍,也就是说圆锥的体积是圆柱体积的三分之一。那老师就奇怪了,你们各小组间的圆柱和圆锥的大小不一样啊,结论怎么会一样呢?难道你们手中的圆柱和圆锥之间有什么奥妙吗?想知道吗?快探究一下吧!(生合作探究)
师:你们发现了什么?
生:我们发现圆柱和圆锥的底面积相等高也相等。
师:这用四个字概括就是“等底等高”。
生:我们也发现圆柱和圆锥等底等高。
生:我认为圆柱和圆锥不等底等高,他们的体积不会是3倍的关系了。(大多数同学点头,同意他的观点。)
生:我和他的意见不同,我认为圆柱和圆锥不等底等高,他们的体积还是三倍的关系。(有几名学生表示同意)
师:有的同学认为是,有的同学认为不是。那么这样,小组间调换一下圆锥,使你手中的圆
圆锥的体积教学反思博客篇六
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的方法。
新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。
思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的出错率比以前小组合作的.学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。
圆锥的体积教学反思博客篇七
以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。
教学不仅仅是告诉,更需要经历。真正关注学生学习的过程,就要有效利用错误这一资源,教师要勇于乐于向学生提供充分研究的机会,帮助他们真正理解和掌握数学思想和方法,获得广泛的数学活动经验,这样,我们的课堂才是学生成长和成功的场所。
圆锥的体积教学反思博客篇八
(课前准备:等底等高、不等底不等高的空圆柱、圆锥、沙子,利用“错误”资源,展示思维过程——《圆锥的体积》一课的案例反思。课前学生都预习过这一内容。)
师:下面分组做实验,在空圆锥里装满沙子,然后倒入空圆柱中,看看几次正好装满。
小组代表从教具箱中自选实验用的空圆锥圆柱各一个,分头操作。
生1:我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。
生2:三次倒满,圆锥的体积是圆柱的三分之一。
生3(有些迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。
生1:是三分之一,不是四分之一。
生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。
……
师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看,将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的体积是圆柱的二分之一。怎么回事?是不是书上的结论有错误?(以前曾有学生对教材中的内容提出过疑问)
学生议论纷纷。……
师:你们说该怎么办?
生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满,教育论文《利用“错误”资源,展示思维过程——《圆锥的体积》一课的案例反思》。)学生调换教具,再试。
师:什么情况下,圆锥的体积是圆柱的三分之一?
生:等底等高。
生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
师:也就是说圆锥的体积等于圆柱体积的三分之一的前提条件是等底等高。
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的,学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的。
圆锥的体积教学反思博客篇九
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的方法。
新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的.体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。
思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的出错率比以前小组合作的学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。
圆锥的体积教学反思博客篇十
圆锥的体积是在学生认识了圆柱与圆锥,并掌握圆柱的体积的基础上教学的。本节课我主要分两个层次进行教学,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了良好的效果,现总结以下几点做法:
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。在教学中,我准备实验的用具,让学生通过动手做实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一,圆柱体积是与它等底等高的圆锥体积的3倍。从而总结出圆锥体积的计算公式:v=1/3sh。从本课的练习环节,发现学生对圆锥体积的计算掌握扎实,这说明操作实验在圆锥体积公式的推导中显得非常重要。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验。培养学生科学实验观。
让每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到探究数学的乐趣。