在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
列代数式教学设计篇一
1.当a=2,b=1,c=3时,c2-(a-b)2等于
a.2b.0c.8d.12[
2.若a与b互为倒数,当a=3时,代数式(ab)2-的值为()
a.b.-8c.d.0
3.某班共有学生48人,其中年龄为a的有21人,年龄为b的'有12人,年龄为c的有15人,用代数式表示平均年龄为______;若a=10,b=11,c=12,则平均年龄是_______岁。
4.有一列数5,15,25,35,…,第9个数是______;第15个数是_____;第n个数是_______。
5.某校有学生宿舍x间,如果6人一间,只有一间没有住满,不满的房间住3人。
(1)写出表示学生人数的代数式;[
(2)求当x=12时,学生的人数是多少?
答案:
1.c2.a3.;10.8754.85;145;5(2n-1)5.(1)6x-3;(2)当x=12时,学生人数为6x-3=69人。
列代数式教学设计篇二
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%((1+16%)x)
(应用引导的方法启发学生解答本题)
二、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本题应由学生口答,教师板书完成)
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和
分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个
三、课堂练习
1设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商
2用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数
3用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕
四、师生共同小结
首先,请学生回答:
1怎样列代数式?2列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业
1用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
《代数式》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
列代数式教学设计篇三
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的.学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
代数式
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.
教学重点和难点
重点:用字母表示数的意义?
难点:学会用字母表示数及正确地说出代数式所表示的数量关系?
课堂教学过程设计
一、从学生原有的认知结构提出问题
1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac?
2、指出:
(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
列代数式教学设计篇四
一、说教材
1、说地位和作用:
新疆是我国西部开发的重要边疆地区,它是我国面积最大、邻国最多的省级行政单位,自然资源丰富;新疆的自然环境对人口、城市分布和农业发展有较大的影响,因此,选择新疆作为案例有鲜明的'代表性。
2、说教学目标:
知识与能力:
(1)了解新疆自然环境特点,能绘制新疆“三山夹两盆”简图;
(2)会运用地图描述新疆地区人口、城市的分布特点,并能分析得出其制约因素——水。
过程与方法:
通过分析新疆地形与城市分布图、新疆的荒漠及周围环境和有关材料,师生一起绘指制新疆“三山夹两盆”简图,让学生理解新疆的自然条件及其发展经济的制约因素。
情感、态度价值观:
明确我国西部开发与环境保护之间的关系,树立可持续发展的人地协调观念。
3、说教学重点、难点:
重点:“三山夹两盆”地形特点及其他自然地理要素之间相互影响的关系。
难点:
(2)明确我国西部开发与环境保护之间的关系,逐树立人地协调和哥持续发展观念。
二、说教法
1、本课运用读图分析法、讲解法、绘图法、启发式教学法。
2、教学突破:
(1)对于“三山夹两盆”的地形特色:运用板图使学生加深印象,借“疆”字巧记。
三、说学法
读图法、绘图法、小组讨论法等。
四、说教学过程
1、说导入:以“羊肉串”导入,直接明了。
2、说小结:较简洁,起承上启下的作用。
3、说板书设计:一目了然,重点突出。
五、说教学反思
本人的设计思路:动脑筋精心设计,尽量运用启发式教学,让学生从温故知新中学习,减少学生负担;想办法突破教学重难点,另外还查找较多的资料,相比较而言,学生准备不是很充分,没有完成老师布置的“预习和查找资料,带着问题学习”的任务,所以以后还要从放手让学生积极查找资料,主动学习方面,培养其良好的学习习惯。
课堂效果较好,教学目标完成的比较顺利,学生在比较轻松愉悦的过程中掌握知识、提高能力。美中不足之处:学生胆子较小,回答问题没有平时积极踊跃。
列代数式教学设计篇五
从生活出发的教学让学生感受到学习的快乐在“代数式”这节课中,由数青蛙引入,带领学生一起探究得出规律,由此引出代数式的概念。在举例时,指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?”学生们开始活跃起来,一位学生举起了手,“一本书p元,6p可以表示6本书价值多少钱”,受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到“人人学有用的数学”的新理念,正如我们所说的,“代数式在生活中”。然后,着重讲解列代数式,按和,差,积,商,倍,分,半等运算,先出现先列时等原则,分清是先平方,还是先求和差。通过典型问题的讲解与练习,学生掌握的不错。
不足和今后在教学中应注意
1、营造有利于新课程实施的环境氛围。
2.注重新型师生关系的建立,在处理好学生、教师、教材三者的关系上多下功夫,力求建立更为和谐融洽的师生关系,有良好的课堂教学气氛,以取得良好的课堂教学效果。
3.进一步学习新课程改革的教育教学理论,在教师角色转变上多做工作,增强自己是学生学习的促进者、教育教学的研究者、课程的建设者和开发者,向开放型的教师迈进。
4.努力提高自己的业务能力,特别是驾驭堂的能力和教材的能力。探索适合我校学生特点和自己特点的课堂教学模式。
5.不断学习和提高现代化教学技术,提高多媒体课件制作能力,能制作出针对性、实效性强的多媒体教学课件,使之更好地辅助教学,提高课堂教学效率、课堂教学质量。
另外,注意发掘他们的闪光点,并给予及时的表扬与激励,增强他们的自信心。只有在教学的实施中,不断地总结与反思,才能适应新的教学形势的发展。