作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么问题来了,教案应该怎么写?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
大班认识长方体和正方体教案篇一
教学中,我注意了培养学生的数学语言能力,重视学生的口头表达,同学们在操作活动中产生了大量的思维语言,小学生的特点就是急于把这些想法告诉老师和同学。我在教学时安排了边摆边记录,再汇报的活动,让学生养成及时记录实验数据的习惯,同时为整理、分析数据准备好必要的材料,更有利于有条理地分析汇报,从而提高语言表达能力。
教学过程就是学生实现认知目标的过程,在这个过程中,给学生思维空间,给学生自主探索的机会,让学生多维多向思考,同时实现师生互动,也就遵循了学生的认知规律,使学生获得了最佳的认知效果。
通过本节课的教学,我认识将主动权还给学生的必要性,这样更能让学生充分体会到学习的乐趣,并能使他们获得成就感。教学是课堂创新和开发的过程,在以后的教学中,()需要我付出更多的心血来激发学生的潜能。
有好的方面,但仍有许多不足,下面就我上的这一节课存在的问题从以下几个方面自评一下。
第一、课件设计还不够完美。如:在关闭flash课件的主页面后,出示幻灯片时应设计一个封面,这样就自然些,而不会显得太突然,而我却将一个封面删取了;还有我后面还设计了一个拓展性的题就是利用长方体和正方体组成的一个动画机器人,让同学们想一想如何知道它的体积,并且还有分解后的图。这道题按我原来的设计是个很能调动学生积极性的题。但时间计划不周这道题没有出示出来,深感遗憾!
第二、教学过程中细心程度不够,有些慌。在随意展示学生填好的表时没有先认真看一下,结果出现学生在长、宽、高数值后面带的单位是cm3而不是cm。
第三、数学教学理论,数学教材钻研的纵深度不够。对数学理论的掌握,数学教材的把握火候不到,对数学有些专业性术语掌握的还有些欠妥。
数学教案-
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
大班认识长方体和正方体教案篇二
长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。
教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。
本节新课教学分为三部分。
第一部分教学长、正方体表面积的意义。
第二部分教学长方体表面积的计算方法。
第三部分教学正方体表面积的计算方法。
大班认识长方体和正方体教案篇三
5×23.正方体表面积的计算方法。
(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?
学生:一个面的面积乘以6。
教师:用棱长来表示它的表面积。
学生:棱长×棱长×6
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6
=9×6
=54(厘米2)
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)
用学生投影片集体订正。
大班认识长方体和正方体教案篇四
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1.完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
板书设计:
教学内容:
求一些不是完整六个面的长方体、正方体的表面积
教学目标:
1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。
2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲
教学重点:
能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。
教学难点:
求一些不是完整六个面的长方体、正方体的表面积。
教具运用:
课件
教学过程:
师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)
1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?
2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。
二、新课讲授
1.教材25页第5题
(2)学生读题,看图,理解题意。
(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)
(4)学生尝试独立解答。
(5)集体交流反馈。
方法一:10×12×2+6×12×2=240+144=384(cm2)
方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)
答:这张商标纸的面积至少需要384平方厘米。
2.教材26页第8题
(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)
(2)学生读题,看图,理解题意。
(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)
(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。
3×3×5=9×5=45(dm2)
答:制作这个鱼缸时至少需要玻璃45平方分米。
三、课堂作业
完成教材第26页练习六第9、10题。
四、课堂小结
五、课后作业
完成练习册中本课时练习。
板书设计:
大班认识长方体和正方体教案篇五
1.口答课本p27:1。
2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)
3.口答。判断正误,并说明理由。
(1)长方体的三角棱分别叫它的长、宽、高。()
(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()
(四)课堂总结及课后作业
1.什么是长、正方体的表面积。长、正方体的表面积如何计算。
2.作业:课本p27:3,4,5。
大班认识长方体和正方体教案篇六
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
长方体、正方体体积公式的推导。
教师准备:一大块橡皮泥;1立方厘米的正方体木块24块;投影仪。
学生准备:1立方厘米的正方体12个
一、创设情境
填空:
1、叫做物体的体积。
2、常用的体积单位有:。
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习:长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
431
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的'体积=长×宽×高。
用字母表示:v=a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习:正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:v=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
大班认识长方体和正方体教案篇七
(1)长方体的认识
教学目的
1.使学生认识长方体的特征,初步掌握长方体的概念,建立和发展初步的空间观念。
2.培养学生动手操作和观察的能力。
3.通过学生的实践活动,培养学生学习数学的兴趣。
教学过程
一、复习
教师:我们已经学习了一些平面图形,都有哪些图形呢?
二、新授
1.导入
教师出示教具,导入新课。
2.学习长方体的特征。
(1)学生拿出自己准备的长方体。
(2)研究长方体的特征。
(3)认识长方体的立体图形。
3.教学例2
三、巩固练习
1.下列图中哪些是长方体,哪些不是长方体,是长方体的指出它的长、宽、高。
2.判断题
(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。()
(2)长方体有可能相邻的两个面的面积相等。()
(3)长方体的每一个面一定是长方形。()
3.说出下面长方体的长、宽、高各是多少厘米?
四、家庭作业:第23页第1、2、3题。
(2)正方体的认识
教学目的
1.使学生掌握正方体的特征,了解长方体和正方体之间的联系和区别。
2.培养学生观察、比较、抽象概括的能力。
3.渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学过程
一、复习
1.长方体有()个面,()条棱,()个顶点。长方体的6个面一般都是()形,也有可能有两个相对的`面是()形,()面积相等;()长度相等。
2.有一个长方体,长5分米,宽3分米,高2分米,它所有棱的棱长之和是()。
二、新授
教学正方体的特征
1.展示动画图像:
(1)将长方体的较长边缩短,使长、宽、高都相等。
(2)将长方体的较短边延长,使长、宽、高都相等。
2.观察学具正方体。
3.继续展示动画图像,进一步明确:
(1)正方体的六个面是完全相同的正方形;
(2)正方体的12条棱长度相等;
(3)有8个顶点。
4.对比长方体和正方体,说出它们的相同点与不同点。
5.填表。
三、巩固练习
1.判断题。
(1)正方体的六个面面积一定相等。()
(2)相交于一点的三条棱相等的长方体一定是正方体。()
(3)长方体是特殊的正方体。()
2.一个正方体每条棱长3分米,它的棱长之和是多少分米?
3.用一条长48厘米的铁丝折成一个正方体的框架,这个正方体的棱长是多少厘米?
四、家庭作业:第23页4――10题。大班认识长方体和正方体教案篇八
1.长方体和正方体表面积的意义。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)
(图像要验证相对的面相等,展示每个面对应的长和宽。)
教师:想一想,长方体的表面积如何计算?
学生讨论后归纳,老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
学生口答老师板书:(或学生板书,同时其余同学填书上。)
解法1:6×5×2+6×4×2+5×4×2
=60+48+40
=148(厘米2)
解法2:(6×5+6×4+5×4)×2
=(30+24+20)×2
=74×2
=148(厘米2)
答:至少要用148厘米2纸板。
练一练:(投影片)一个长方体长4米,宽3米,高2