作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些最新的教案范文,方便大家学习。
年级数学教案篇一
教学目标:
1.巩固对常见平面图的认识,初步体验平面图形之间的关系。
2.发展幼儿创造力思维灵活性和动手操作能力。
3.初步认识了解公用边,知道公用边的特征及含义。
教学准备:
ppt、美工垫、雪糕棒
教学过程:
一、导入活动:巩固对常见平面图形的认识。
播放ppt 第1页请幼儿观看,这是什么呀?今天老师要给小朋友变个魔术,小朋友可要看仔细哦。
二、讲解“公用边”
2播放ppt第4-6页。成功了吗?我用5根雪糕棒也拼搭出了两个三角形,咦?奇怪了,同样是两个三角形,为什么前面我用了6根雪糕棒,而现在我只用了5根雪糕棒也能搭出两个三角形?(引导幼儿说出两个图形都用到中间的一根雪糕棒)
小结:原来这根雪糕棒即是上面三角形的一条边,也是下面三角形的一条边,两个三角形都用到了这条边,(教案出自:屈老师教案网)我们就把这条两个图形都用到的边叫做“公用边”。
三、创设情境,引发幼儿对闯关游戏的兴趣,启发幼儿用雪糕棒拼搭出图形,感知图形公用边的特征。
1.播放ppt电话声音,教师模仿接电话,告知电话内容,引入闯关游戏。
2.引导幼儿用公用边的方法拼搭出要求的图形,进行闯关游戏。
第一关:播放ppt第7---10页,引导幼儿用6根雪糕棒,用公用边的方法拼搭出一个三角形,和一个正方形,并找出它们的公用边。
3.幼儿自由操作,教师巡回指导。
4.幼儿展示自己拼搭成果,并找出公用边。
小结:集体观看ppt第11---12页,原来6根雪糕棒可以拼搭出方向不同的图形,而且每个图形都有一条它们的公用边。
第二关:播放ppt第13---14页,引导幼儿用公用边的方法,用最少的雪糕棒拼搭出2个正方形和1个长方形,并找出它们的公用边。
5.幼儿自由操作,教师巡回指导。
6.幼儿展示自己拼搭成果,并找出公用边。
小结:集体观看ppt第15页,引导幼儿感知用最少的雪糕棒拼搭出的每一条边都是长方形和正方形的公用边,这些边共组成了一个长方形和两个正方形。
7.集体观看ppt第16---17页,听音乐《大家一起喜洋洋》与同伴一起高兴的跳舞,体验闯关成功的乐趣。
四、教学延伸。
个三角形。
年级数学教案篇二
教学目标:
能力目标:用平面向量的数量积可以处理有关长度、角度和垂直的问题;
情感目标:感受向量的应用,体会解题的乐趣。
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学重点、难点及其解决对策:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.
教学方法:讲练结合法。
教学过程:略
小结:
1. 两个非零向量夹角
2. 向量的数量积的定义和几何意义.
3. 两个向量的数量积的性质:
教学后记:
年级数学教案篇三
1、结合具体情境初步认识分数,知道把一个物体或图形平均分成若干份,其中的一份可以用分数来表示,并理解只有“平均分”才能产生分数。
2、正确认识和读、写几分之一的分数,知道分数各部分名称。
3、能用实际操作的结果表示相应的分数。
4、会直观比较简单分数的大小比较。
教学重难点
重点:正确认识几分之一的分数。
难点:知道平均分才能用分数表示,会直观比较简单分数的大小。
教学准备
多媒体课件,学生每人准备同样大小的圆形纸、长方形纸,绳子,水彩笔。
教学过程设计
教学内容
师生活动
备注
一、情景导入
二、研究二分之一
三、导入其它的几分之一
四、练习
五、比较大小
六、拓展
1瓶矿泉水
半个蛋糕)
这三个结果中哪个结果比较特别?
“半个”你能用一个数来表示吗?
今天,我们就来研究像这样的数,它们有一个好听的名字叫分数。(板书:分数)
1、那么什么是分数呢?
(边说边课件动画演示切蛋糕)把一个蛋糕,平均分成2份,这一份就是它的(老师指着左半个蛋糕,在蛋糕上出示分数)。老师指着另一半蛋糕问:那这一份呢?(学生回答后,动画出示分数)也就是每份是它的。就是分数。
说说是怎么得来的?(指名说,老师小结,并课件出示文字,再互相说说,并结合口答板书)
2、在我们桌上有一些纸片和绳子,你能找到它们的吗?
你是怎么得到的?
归纳:不管怎样,只要把一样物体平均分成2份分,每份就是它的。
3、刚才小朋友们找到了,在这些图形中,哪些图形的涂色部分能用来表示。
最后一个图形的涂色部分你觉得是几分之一?你怎么想的?
你觉得还可有哪些分数?(指名学生口答并板书出分数)
今天所学的分数有共同的地方,谁发现了?小组里讨论。(指名说)
1表示什么?横线下的数又表示什么呢?
像、、......这些分数都是由哪几部分组成的,请大家自学p100。
交流,结合回答板书:......分子
......分数线
......分母
我们认识了分数,那下面的图形你能用分数表示吗?(书本p101第1题)
最后一幅变为
同样涂色部分,为什么分数变了?
1、刚才我们折出了圆的,你还能折出圆形纸的几分之一?
和你的同桌折的要不一样,并把一份涂上颜色,说说你是是折的。
2、同桌比较涂色部分谁大谁小?分数谁大谁小?
(师选二分之一和十六分之一比)
3、看这张圆形纸(师出示八分之一),你认为贴在哪里好?为什么?
4、(师选四分之一,不给学生看到)四分之一你认为放在哪里好?为什么?
拿出圆形纸,验证。
最新人教版三年级数学上册教案
年级数学教案篇四
本单元教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
在数学问题中有一类与“存在性”有关的问题。例如,任意13人中,至少有两人的出生月份相同。任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。
本单元用直观的方式,介绍了“抽屉原理”的两种形式。例1描述的是最简单的“抽屉原理”:把m个物体任意分放进n个空抽屉里,那么一定有一个抽屉中放进了至少2个物体。例2描述了“抽屉原理”更为一般的形式:把多于kn个物体任意分放进n个空抽屉里,那么一定有一个抽屉中放进了至少(k+1)个物体。例3是“抽屉原理”的具体应用。“做一做”和练习十二中安排了许多“抽屉原理”的变式练习,帮助学生加深对“抽屉原理”的理解,并学会利用“抽屉原理”解决简单的实际问题。
二、教学目标
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过“抽屉原理”的灵活应用感受数学的魅力。
三、导学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
导学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
四、突破措施
1、应让学生初步经历“数学证明”的过程。
在数学上,一般是用反证法对“抽屉原理”进行严格证明。在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式对某一具体现象进行“就事论事”式的解释。本单元安排了一些需要学生解释原因的题目,可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明书做准备。
2、应有意识的培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。当我们面对一个具体问题时,能否将这个具体问题和“抽屉问题”联系起来,能否找到该问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在联系,能否找出该问题中什么是“待分的东西”,什么是“抽屉”,是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可能解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。这个过程实际上是学生经历将具体问题“数学化”的过程,能否从纷繁复杂的现实素材中找出最本持的数学模型,是体现学生数学思维和能力的重要方面。
3、要适当把握教学要求。新课标第一网
“抽屉原理”本身或许并不复杂,但它的应用广泛灵活多变,因此,用“抽屉原理”来解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“抽屉问题”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
年级数学教案篇五
【教学目标】:
(1)知识目标:
通过实例,了解简单的逻辑联结词“且”、“或”的含义;
(2)过程与方法目标:
(3)情感与能力目标:
在知识学习的基础上,培养学生简单推理的技能。
【教学重点】:
通过数学实例,了解逻辑联结词“或”、“且”的含义,使学生能正确地表述相关数学内容。
【教学难点】:
简洁、准确地表述“或”命题、“且”等命题,以及对新命题真假的判断。
【教学过程设计】:
教学环节教学活动设计意图
情境引入问题:
下列三个命题间有什么关系?
(1)12能被3整除;
(2)12能被4整除;
知识建构归纳总结:
一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,
记作,读作“p且q”。
引导学生通过通过一些数学实例分析,概括出一般特征。
1、引导学生阅读教科书上的例1中每组命题p,q,让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误。学习使用逻辑联结词“且”联结两个命题,根据“且”的含义判断逻辑联结词“且”联结成的新命题的真假。
2、引导学生阅读教科书上的例2中每个命题,让学生尝试改写命题,判断真假,纠正可能出现的逻辑错误。
归纳总结:
当p,q都是真命题时,是真命题,当p,q两个命题中有一个是假命题时,是假命题,
学习使用逻辑联结词“且”改写一些命题,根据“且”的含义判断原先命题的真假。
引导学生通过通过一些数学实例分析命题p和命题q以及命题的真假性,概括出这三个命题的真假性之间的一般规律。
年级数学教案篇六
[成功之处]现实情境是学生列算式的依据,通过直观的情境图,加深学生对情境的理解,鼓励学生从不同角度思考,得出不同的算法,再通过练习,优化算法。
[不足之处]学生的自主性不强,设计中以学生的探究交流为主,但是教师的引导过多,学生动眼、动手、动脑、动口的综合能力没有体现。
[再教设计]在掌握了两位数乘整十数的口算方法的基础上,引导学习探究计算方法,放手让学生自主探究整百数、几百几十数乘两位数的口算方法,培养学生独立思考的能力。
第3课时口算乘法的综合练习
年级数学教案篇七
本单元内容是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认识负数。以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触到了一些负数,有了初步认识负数的基础。在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。
在实际生活中存在很多相反意义的量,比如,气温的零上和零下,存折上现金的存入和支取,水位高度的上长升和下降,海拔高度的高于海平面和低于海平面,等等。为了表示这样两种相反意义的量,还用学生原有的数概念知识就不够了,这样就自然引入了负数的认识。教材首先通过学生熟悉的生活情境如气温、存折中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义,接下来通过用负数表示日常生活中的简单问题加深对负数意义的理解。在此基础上,再让学生在直线上表示出正数和负数,初步建立数轴的模型,形成数的比较完整的认知结构,然后借助数轴对气温进行排序让学生初步辨别正数、0和负数之间的大小关系。
二、教学目标
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
三、教学重点:理解负数的意义,体会数轴上正、负数的排列规律。
教学难点:会在数轴上比较正数、0和负数的大小。
四、突破措施
1、通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,老师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起已有的生活经验,激发学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,老师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2、把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。关于数的大小比较,特别是两个负数的比较,这里还不是抽象的比较,只要能借助数轴来比较就可以了。
五、本单元内容可安排2课时进行教学。
年级数学教案篇八
[成功之处]本节教学创设学生自主合作、讨论问题的学习情境,旨在让学生运用已有知识和已有的口算方法,探索新的口算方法。在学生自主探索的基础上,组织学生动手画一画、摆一摆、说一说、想一想,以完善学生对口算过程与算理的理解,并逐步学会用数学解决问题,获得成功的体验。
[不足之处]学生在表述口算过程时,语言描述不完整,思路局限于个别学生的想法中,不能展开思路,大胆思考。
[再教设计]教学中要尊重学生的表达,多鼓励学生动手做、动嘴说,让学生在体验口算过程的同时,完善语言表达,促进发散思维的训练。
第2课时两位数乘整十数、整百数(不进位)的口算
年级数学教案篇九
六年级数学教案-数学思考教案(新人教六下)
【教学内容】《义务教育课程标准实验教科书・数学》六年级下册第91页例4及练习十八第1~3题。【教学目标】1.通过学生观察、探索,使学生掌握数线段的方法。2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。3.培养学生归纳推理探索规律的能力。【教学重、难点】引导学生发现规律,找到数线段的方法。【教具、学具准备】多媒体课件【教学过程】一、游戏设疑,激趣导入。1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)【评析】巧设连线游戏,紧扣教材例题,同时又让数学课饶有生趣。任意点8个点,再将每两点连成一条线,看似简单,连线时却很容易出错。这样在课前制造一个悬疑,不仅激发了学生学习欲望,同时又为探究“化难为简”的数学方法埋下伏笔。二、逐层探究,发现规律。1.从简到繁,动态演示,经历连线过程。师:同学们,用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。师:2个点可以连1条线段。为了方便表述我们把这两个点设为点a和点b。(同步演示课件,动态连出ab,之后缩小放至表格内,并出现相应数据,如下图)师:如果增加1个点,我们用点c表示,现在有几个点呢?(生:3个点)如果每2个点连1条线段,这样会增加几条线段?(生:2条线段,课件动态连线ac和bc)那么3个点就连了几条线段?(生:3条线段)师:你说得很好!为了便于观察,我们把这次连线情况也记录在表格里。(课件动态演示,如下图)师:如果再增加1个点,用点d表示(课件出现点d)现在有几个点?又会增加几条线段呢?根据学生回答课件动态演示连线过程)那么4个点可以连出几条线段?(生:4个点可以连出6条线段。课件动态演示,如下图)师:大家接着想想5个点可以连出多少条线段?为什么?(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示,如下图)师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。(学生动手操作,之后指名一生展示作品并介绍连线情况,课件演示:完整表格中6个点的.图与数据)【评析】让学生从2个点开始连线,逐步经历连线过程,随着点数的增多,得出每次增加的线段数和总线段数,初步感知点数、增加的线段数和总线段数之间的联系。2.观察对比,发现增加线段与点数的关系。师:仔细观察这张表格,在这张表格里有哪些信息呢?(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)