通过知识点总结,我们不仅能够复习巩固已学知识,还能够不断拓展自己的知识面。以下是小编为大家准备的军训总结范文,希望能够对大家的写作有所帮助和指导。
初一有理数知识点总结及易错点篇一
要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。
很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
初一有理数知识点总结及易错点篇二
第1项:“数的整除”
第一节有理数
1.正数和负数
2.有理数
第二节运算
1.有理数的加减法
2.有理数的乘除法
3.有理数的乘方
重要程度--五颗星。对于这一部分的内容主要把握三点:
(2)逐步加深对有理数的认识。首先,清楚地认识到有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,对有理数的概念的理解,运算的掌握就简便多了。其次,清楚有理数的分类与小学的算术数相比只是多了负整数和负分数。
(3)有理数的运算,其实是由两部分组成:小学学习过的运算加上中学学习过的“符号”确定,只要特别注意符号的确定,那么有理数的运算就不成为难点了。
第2项:“分数”
第一节分数的意义和性质
1.分数与除法
2.分数的基本性质
3.分数的大小比较
第二节分数的运算
1.分数的加法
2.分数的乘法
3.分数的除法
4.分数与小数的互化
举例说明以下两种类型:
1.对应法:量与率对应关系
分析:由于还余下总数的1/4,说明已经卖出的水果质量就是总数的(1-1/4))=3/4,只要找出第一、二天卖出的水果总质量,它所对应的就是总数的,这样按照已知一个数的几分之几是多少,求这个数的方法,即求出这批水果的总质量。
2.转化法:不同的单位“1”转化
分析:题目中有两个不同的单位“1”,条件中的两个分数分别属于两个不同的单位“1”,要弄清甲乙两人存款数之间的关系,必须运用转化思维的方法,将两个不同的单位“1”量转化为一个共同的单位“1”,这是解答此类应用题的关键。根据“甲的存款数的1/4等于乙存款数的1/5”这个条件,可以把甲的存款数看作单位“1”,乙的存款数就是甲的((1/4)÷(1/5)),这样就转化了单位“1”,再用已知量甲、乙钱数的差除以它们分率的差就可以求出单位“1”量了。
第3项:“比和比例”
第一节比和比例
1.比的意义
2.比的基本性质
3.比例
第二节百分比
1.百分比的意义
2.百分比的应用
3.等可能事件
第4项:“圆和扇形”
第一节圆的周长和弧长
1.圆的周长
2.弧长
第二节圆和扇形面积
1.圆的面积
2.扇形的面积
重要程度--四颗星。弧长与扇形面积的计算公式需要熟记,这一部分的知识点会链接到初三下学期“正多边形与圆”,会有一些组合图形的阴影面积需要计算,这里也会是孩子学习的一个难点。
初一有理数知识点总结及易错点篇三
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4.在代数式中出现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。
3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.
4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和” 中单项式的个数。
用含有数、字母和运算符号的式子把问题中的.数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:
(1)列代数式的关键是理解和找出问题中的数量关系;
(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;
(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。
一般地,用数值代替代数式中的字母,按照代数式中指明的运算计算的结果叫做代数式求值。
代数式求值的三种方法:1.直接代入求值;2.化简代入求值;3.整体代入求值。
常见考法
列代数式与代数式求值是中考的必考知识点,它涉及的知识范围广,可与实际问题(如乘车,购物、储蓄、税收等)相结合,特别的探索规律列代数式这类考题为中考命题者提供了广泛的空间,是近几年的热点,这类题通常是从一列数、一个数阵、一个等式、一组图形中,观察出规律,并尝试归纳出代数式或公式,再加以验证。
误区提醒
(1)列代数式时,由于审题不清,对条件理解不透,很容易搞错运算顺序而列错代数式;(2)求代数式的值,将代数式中字母用相应的数值后,代数式就变成了实数的混合运算。如果没有对实数运算掌握好,就会出现运算顺序搞错的现象。(3)在进行规律探索中,由于在审题中没有抓住问题的性质,常常得出不能完全反映全部规律的错误规律,出现以点概面,以偏概全的现象。
初一有理数知识点总结及易错点篇四
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查.
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.
3.总体:要考察的全体对象称为总体.
4.个体:组成总体的每一个考察对象称为个体.
5.样本:被抽取的所有个体组成一个样本.
6.样本容量:样本中个体的数目称为样本容量.
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.
8.频率:频数与数据总数的比为频率.
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.
初二数学复习方法
按部就班
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
强调理解
概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
基本训练
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
重视错误
订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
初一有理数知识点总结及易错点篇五
单项式和多项式统称整式。
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
b)指数是1时,不要误以为没有指数;
d)当三个或三个以上同底数幂相乘时,法则可推广为
(其中m、n、p均为整数);
e)公式还可以逆用:
(m、n均为整数)
a)幂的乘方法则:
(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
b)
(m,n都为整数)。
d)底数有时形式不同,但可以化成相同。
e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。
g)幂的乘方与积乘方法则均可逆向运用。
初一有理数知识点总结及易错点篇六
1.字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来。比如:a可以表示一个集合;f(x)表示x的函数等等。
【列代数式的定义】
【代数式的求值步骤】
1.用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.
2.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
1.同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项(lie ters)。
2.所有的常数项都是同类项。
【合并同类项】
1.合并同类项的定义:把多项式中的同类项,叫做合并同类项(unite lie ters)。
2.合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
【去括号与添括号】
1.去括号法则:如果括号外的因数是正数,去括号原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.去括号是应该注意:
(1)去括号时,要将括号连同它前面的符号一起去掉;
(2)在去括号时,首先要明确括号前是“+”还是“-”;
(3)该变号时,各项都变号;不该变号时,各项都不变号。
添括号
添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.
【整式的加减运算法则(整式加减去括号)】
一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
初一有理数知识点总结及易错点篇七
1、打好初中的基础。
数学的学习属于环环相扣,很多初中学习过的基础知识,到了高中还会大量使用,所以升入高中以后,葛艳波建议大家,如果初中数学基础太差,一定要想办法再弥补一下,不然会成为后续数学学习的绊脚石。
2、学习一定要有目标。
试想一下,一个学生学习数学没有一个明确的目标,哪来的学习动力?有了学习目标就有了学习动力,那么学生在课堂上就会精神饱满、热情洋溢,学生会身心健康。没有目标的学生,数学学习过程中完全属于被动式学习,效果很差。尝试给自己制定一些目标,比如下次考试考多少名,大学要考什么大学,每天要完成具体哪些任务,目标越明确、越详细越好。
3、学习要主动,不能被动式学习。
数学差生和优秀学生最大的差别,就是学习是主动还是被动。一定积极主动去参与学习,而不是被老师、作业逼着去学习。
返回目录
初一有理数知识点总结及易错点篇八
一、有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
二、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数
二年级上册数学第七单元练习知识点
一、填空。
1、时针走一个大格是()时,走一圈是()个小时。
分针走一个小格是()分,走一个大格是()分,走一圈是()分。
2、2∶10再过30分钟后是()时()分。
3、现在时间是上午7时45分,再过()分是8时正。
4、现在的时间是1∶57,再过3分是()。
5、()时整,时针和分针成一条直线;()时整,分针和时针重合。
6、现在是11时,再过2时是()时。
7、分针从6走到9,走了()分,时针从6走到9走了()时
8、钟面上时针指着8,分针指着12是()时整。
9、钟面上时针走过7,分针从12起走了30个小格,这一时刻是()时()分。
10、钟面上时针指着6,分针指着12是()时。这时时针和分针在一条直线上。
11、时针在9和10之间,分针指着7,是()时()分。
12、从上海开往南京的火车,甲车是6:50开,乙车是7:30开,()车开的早。
13、小军每天6:20起床,小青每天6:25起床,()起床早。
14、1时=()分1时-8分=()分
50分+40分=()时()分1时+15分=()分
1个半小时=()分1个半小时-20分=()分
二、填上合适的时间单位。
1、一节课的时间是40()。
2、小学生每天在校时间是6()。
3、看一场电影要2()。
4、工人叔叔每天工作8()。
5、从上海坐火车到北京要17()。
6、李勇从家走到学校要15()。
三、判断。
1、分针走一圈是1分。()
2、钟面上最短的针是分针。()
3、电子表上显示6:45就是6时45分。()
4、分针从一个数字走到下一个数字是5分钟。()
5、妈妈每天工作8小时。()
小学二年级的孩子如何学好数学?
1、数学入门越早越容易
现在数学在各种选拔以及小学六年级考试等方面越来越重要,很多家长希望孩子能够学习一些数学。对于今后希望在小学六年级中选择较好学校的学生,我们的建议是较早的学习相对是较好的。首先较早学习数学,数学的知识体系比较完整,不会存在六年级时还要补习三年级数学知识的情况。其次较早入门有比较充足的时间激发孩子对数学的兴趣,入门难度相对较低。
2、兴趣最重要,起点是关键
不少四五年级希望开始学习数学的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过数学的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小学六年级形势又不得不学。对于这样的学生,学习数学是有一定阴影的,甚至有些学生抱定了自己不适合学数学的念头,有一定抵触心理。
所以既然家长决定低年级开始学习数学,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。
同时起点如果没有选好,孩子学得吃力,自然不会有兴趣,所以合适的课程选择也是家长要注意的。
3、一个好老师,一个好习惯
对于二年级的学生来说,兴趣和学习习惯的培养都是非常重要的。所以找一位孩子喜欢的老师就是学习的重中之重。一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。在课堂上,老师不仅是孩子的是师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。