民族团结是我国社会主义事业的重要基础和保障。加强民族团结工作,是公安机关履行职责使命的重要内容。以下是一些民族团结的重要人物和领导,希望能够成为我们的榜样和楷模。
解方程教学设计及设计意图篇一
圆的标准方程,这节内容我安排了两节课的时间,这节课主要是圆的标准方程的推导和一些简单的运用。在平面解析几何中,我认为这节内容很重要,因为它的研究方法为以后学习圆锥曲线提供了一个基础模式,如果学生掌握得好,后面的学习会轻松许多。
由于我所面对的学生初中数学基础不是很好,所以提前复习了旧知识,之后我引入了生活中的一个常见问题引发学生的疑问,产生认知冲突形成学习的氛围,进而提高学生学习本节内容的兴趣。
圆的标准方程是求曲线方程的一个具体表现,但学生对圆的标准方程还是很陌生,难以将圆与圆的标准方程紧密联系起来。基于此,我想通过学生的切身体验;来发现圆的决定要素,让学生明确一个圆对应一个方程,在此基础上借助求曲线方程的基本步骤,由学生自主探究推导出以(2,3)为圆心,2为半径的圆的标准方程,再由特殊到一般,利用化归的思想归纳出以(a,b)为圆心,r为半径的圆心的标准方程。并引导学生找出方程的特征,以帮助学生理解和记忆,及时掌握。
例题教学的设计,还是紧密围绕圆的标准方程这一目标展开,主要加深对圆的标准方程的理解及一些简单的应用。例题安排不多,但变式较多,变式的设计由特殊到一般,由简到繁,由浅入深,层层入深,让学生的思维得以提高,比较符合学生的认知规律,这样学生接受起来比较容易。
课堂练习,是对本节课目标落实情况的检测,让学生明确本节课应该到达什么样的目标,题不多,很基础,主要是激发学生的兴趣和增强学习的自信。
整个教学设计,我的希望是以学生自主学习为主,所以很多问题都由学生独立思考或讨论完成,教师仅仅是一个引路人,让学生的主体地位得到充分体现,注重学生思维的形成过程,并将数学思想方法渗透到教学中。
总的来说,这节课几乎是按自己的教学设计在进行,而且顺利地完成了。应该说在学生动手,双基落实方面还不错,学生的活动也比较充分,教师仅是及时的.引导和。
解方程教学设计及设计意图篇二
教学内容:
人教版课标教材小学数学第九册第四单元第53页、第54页“方程的意义”。教学目标:借助生活情境理解方程的意义,能从形式上判断一个式子是不是方程;经历从生活情境到方程模型的建构过程,感受方程思想;培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
准确从生活情境中提炼方程模型,然后用含有未知数的等式来表达,理解方程的意义。
教学难点:
理解方程的意义,即方程两边代数式所表达的两件事情是等价的。
教学过程一、呈现情境,建立方程
1.师:(出示一台天平)请看,这是一台天平,在什么情况下天平会保持平衡呢?
提问:你能用一个式子表示这种平衡吗?(100+100=200或100×2=100)你怎么想到了用数学符号“=”来表示天平的平衡呢?(引导学生说出:这里的100+100表示的是天平左盘食物的质量,200表示的是天平右盘砝码的质量,正因为它们的质量相等,天平才会平衡,如果学生说成:食物的质量=砝码的质量,教师也给予肯定,然后问:现在已经知道这两袋食物的质量都是100克,砝码的质量是200克,那么上面的式子可以写成什么形式?)
2.(出示两小袋食品)将左盘的食物换成两袋30克的食物,天平还是平衡的吗?为什么?你能用一个式子表示这种不平衡吗?(30+30200)咱们班谁喜欢喝牛奶?你喝吧!问:这盒牛奶被喝掉多少克了?再问:这盒牛奶现在的质量可以怎么表示?(275-x)克。
3.再将这盒喝过的牛奶放在天平的左盘,可能会出现什么情况?可以怎么表示?写一写!点名汇报,(切忌一问一答!当学生答出一种情况,老师随机问这种情况表示的是什么情况)
(对不是方程的式子,一定要学生从本质上解释为什么不是方程)
课件出示(配以录音):早在三千六百多年前,埃及人就会用方程解决数学问题了,在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料,一直到三百年前,法国的数学家笛卡尔第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
很多以前用算术方法解起来很难的问题,用方程能轻而易举地解出来。
设计意图:
动态平衡是为了加深对方程本质的理解判断题中对不是方程的式子的合理解释,进一步明晰了方程的表现形式有别于其他等式、不等式或代数式,为了让学生感知方程的多样性,防止学生把未知数狭隘地理解为一个或者狭隘地理解为z,在这一题里设计了有两个未知数的,也设计了含有未知数a、y的。
解方程教学设计及设计意图篇三
课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,引导学生从身边的问题研究开始,主动寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流.在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决简单问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.
本节的重点是建立实际问题的方程模型,通过探究活动,可以进一步体验一元一次方程与实际生活的密切关系,加强数学建模思想,培养学生运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比较贴近生活实际,所以在探究过程中正确建立方程是主要难点,突破难点的关键是弄清问题的背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.切实提高学生利用方程解决实际问题的能力.
从“课程标准”看,在前面学段中已有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程.即对于方程的认识已经经历了入门阶段,具有一定的感性认识基础.但学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经历过自己的努力来克服困难的过程中体验如何进行探究活动,而不是代替他们思考,不要过早给出答案,应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思考,使其获得更大的收获.
知识与技能:
1.用一元一次方程解决实际问题.
2.会通过移项、合并同类项解一元一次方程.
3.知道用一元一次方程解决实际问题的基本过程.
1.会将实际问题转化为数学问题,通过列方程解决问题.
2.体会数学应用的价值.
会设未知数,并能利用问题中的相等关系列方程,对于列出的方程能用“移项”等方法来解决手机收费问题,进一步了解用方程解决实际问题的基本过程.
通过学习,使学生更加关注生活,增强用数学的意识,从而激发其学习数学的热情.
重点:会用一元一次方程解决实际问题.
难点:将实际问题转化为数学问题,通过列方程解决问题.
采用探究、合作、交流等教学方式完成教学.
采用多种媒体辅助教学.
一、创设情境,导入新课(观看大屏幕)
二、学习新课,探究新知
展现问题:
小明的爸爸新买了一部手机,他从电信公司了解到现有两种移动电话计费方式:
他正为选择哪一种方式犹豫呢?你能帮助他做出选择吗?
(一)算一算:
一个月通话200分钟,按两种计费方式各需交费多少元?300分钟呢?
通话时间,全球通,神州行
[设计意图:这里用表格形式给出答案,便于学生对后面问题的分析.]
(二)议一议:
(1)累计通话t分钟,用“全球通”收费多少元?
(2)累计通话t分钟,用“神州行”收费多少元?
(3)对于某个通话时间,两种计费方式的收费会一样吗?
(三)解一解:
设累计通话t分钟,两种计费方式的收费会一样.
则:
0.6t=50+0.4t,
移项,得0.6t-0.4t=50,
合并,得0.2t=50,
系数化为1,得t=250.
由上可知,如果一个月通话250分钟,那么两种计费方式的收费相同.
(四)想一想:
怎样选择计费方式更省钱呢?(可分组交流)如果一个月内累计通话时间不足250分钟,那么选择“神州行”收费少;如果一个月内累计通话时间超过250分钟,那么选择“全球通”收费少.
(五)试一试:
根据以上解题过程,你能为小明的爸爸做选择了吗?如果小明的爸爸活动较多,与外界的联系一定不少,手机使用时间肯定多于250分钟,那么,他应该选择“全球通”,否则选择“神州行”.
(六)猜一猜:
假如你爸爸也遇到同样问题,请为你爸爸作出选择?
三、巩固训练,能力提升
1.方程6x+a=12与3x+1=6的解相同,则a=()。
a.1b.2c.3d.4
2.某蔬菜生产基地10月份上市青菜x万千克,11月份上市青菜是10月份的4倍还多5万千克,那么两个月份共上市青菜()万千克。
a.3x+3b.4x+4
c.5x+5d.6x+6
3.一列火车长为150米,以每秒15米的速度通过600米隧道,从火车进入隧道算起到这列火车完全通过隧道所需时间是()秒。
a.30b.40c.50d.60
4.有一根竹竿和一条绳子,竹竿比绳子短2米,把绳子对折后比竹竿短1.5米,则竹竿长()米.
a.3b.4c.5d.6
5.三个数的比是5∶6∶7,它们的和是198,则这三个数分别是()。
a.33、44、55b.44、55、66
c.55、66、77d.66、77、88
四、知识回顾,归纳总结
1.不同层次学生对本节知识认知程度(可谈收获及感受);
2.用一元一次方程分析和解决实际问题的基本过程(师生共同总结)。
五、布置作业,巩固新知
1.基础作业:教材84页第4题,85页第10题。
2.课外探究:某学校在暑假将带领该校“科技能手”去北京旅游,甲旅行社说:“如果校长买全票,则其余学生可以享受半价优惠”;乙旅行社说:“包括校长在内,全部按全票价6折优惠”;若全票价为40元.
(1)如果学生为3人或7人时,两个旅行社各收费多少?
(2)学生数为多少时,两家旅行社的收费一样?
[设计意图:及时了解学生学习效果,调整教学安排,通过课后探究,独立思考,自我评价学习效果,使得基础知识和基本技能在头脑中留下较深刻的印象。
解方程教学设计及设计意图篇四
一、活动内容:
课本第110页111页活动1和活动3
二、活动目标:
1、知识与技能:
运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:
(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
3、情感态度与价值观:
通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。
三、重难点与关键
1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点
3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。
四、教具准备:
投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。
五、教学过程:
(一)、活动1
一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:
这个人买了n件商品需要多少元?
教师活动:
(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。
(2)教师对学生在发表解法时存在的问题加以指正。学生活动:
(1)分组后对活动一的问题展开讨论,探究解决问题的方法。
(2)学生派代表上黑板板演,并发表解法。
解:2.2nn100
2.2100+2(n-100)n100
问题转换:
一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:
(1)这个人买这种商品多少件?
(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?
教师活动:同上学生活动:同上
解:(1)n220
100+n220
(2)=0.48nn=0
100+=0.48nn=500
(二)、活动2:
本活动课前布置学生做好活动前的准备工作:
1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。
2、分组:(4人一组)
开始做下面的实验:
(1)把直尺的中点放在支点上,使直尺左右平衡。
(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?
(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a和b,(不妨设较长的一边为a)
(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。
(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?
以上实验过程可以由学生填写在预先设计的记录表上
实验次数棋子数ab值a与b的关系
右左ab
第1次11
第2次12
第3次13
第4次14
第n次1n
根据记录下的a、b值,探索a与b的关系,由于目测可能有点误差。
根据实验得出a、b之间关系,猜想当第n次实验的a和b的关系如何?a=nb(学生实验得出学生代表发言)
如果直尺一端放一枚棋子,另一端放n枚棋子,直尺的长为l,支点应在直尺的哪个位置?(提示:用一元一次方程解)
此问题由学生合作解决并派代表板演并讲解,教师加以指正。
解:设支点离n枚棋子的距离为x得:
x+nx=lx=答:略
(三)、小结,由学生谈本节课的收获。
(四)、作业
1、课后了解实际生活中的类似活动问题,并举出几个例子。
2、课本,第110页活动2。
解方程教学设计及设计意图篇五
【知识与技能】
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
【过程与方法】
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
【情感态度和价值观】
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
二、教学重点
建立一元一次方程的概念,寻找相等关系,列出方程。
三、教学难点:根据具体问题中的相等关系,列出方程。
四、教学准备:多媒体教室,配套课件。
五、教学过程:
1。游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是20xx年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会。
2。突出主题,突出主体
(1)师:看大屏幕,独立思考下列问题,根据条件列出式子。
a。x的2倍与3的差是5
b。长方形的的长为a,宽比长少5,周长为36,则=36
师:这些式子小学学习过,它们是?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本p/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读p/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程,学生讨论出上述答案后
师:大屏幕显示上述问题的答案
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
五、基础巩固与知识延伸
(1)基础练习见同步练习册
(2)拓展练习如下;
1、下列四个式子中,是一元一次方程的是()
a。1+2+3+48b。2x3c。x=1
d。|10。5x|=0。5ye、
2、已知关于x的方程ax+b=c的解是x=1,则=
3、下面有四张卡片,请你至少抽出三张卡片编写两道一元一次方程,并和你的同学交流一下,看看你和谁不谋而合!
六、小结作业
解方程教学设计及设计意图篇六
本章的内容包括等式的基本性质,一元一次方程的概念、解法和应用,其中一元一次方程的解法是本章的主要内容,而建立一元一次方程模型解决实际问题是本章知识的重点和难点。
一、本章知识的学习流程图:
二、基础性目标总结:
一元一次方程是最基本的代数方程,对它的理解和掌握对于后续学习(其他的方程、不等式以及函数等)具有重要的基础作用。因此,在教学中我们要注意打好基础,对本章中的基础知识和基本技能、能力等进行及时的归纳整理,安排必要的、适量的练习,使得学生对基础知识留下较深刻的印象,对基本技能达到一定的掌握程度,发展基本能力。通过本章的学习,学生达到了以下的基础目标:
1、了解一元一次方程及其相关概念;
2、理解等式的基本性质;
3、了解解方程的基本目标,熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法;
4、清楚列方程解决实际问题的基本步骤,会利用一元一次方程解决一些常见的实际问题。
三、发展性目标总结:
在对本章知识的学习时,教师在教授知识的同时,也应注意知识形成的过程,让学生从中体会知识之间的相互联系,感受数学的`实际价值,从而培养学生的学习能力。同过本章的学习,学生基本上要达到以下目标:
1.经历“把实际问题抽象为一元一次方程”的过程,能够“列出一元一次方程表示问题中的等量关系”,体会方程是刻画现实世界中等量关系的一种有效的数学模型。
2.通过观察、对比和归纳,探索等式的性质,能利用它们探究一元一次方程的解法。
3.通过探究解一元一次方程的一般步骤,体会其中蕴涵的化归思想。
四、融通性目标总结:
1、突出建摸思想,实际问题作为大背景贯穿全章。
在本章中,课本安排了许多有代表性的实际问题作为知识的发生、发展的背景材料,实际问题始终贯穿于全章,对方程、一元一次方程概念的引入和对它们的解法的讨论,都是通过提出实际问题,为解决实际问题需要建立一元一次方程模型,然后求解一元一次方程这样的过程进行学习的。
2、注重知识的前后联系,强调通过比较来认识新事物。
本章在是在学习了有理数和整式的加减运算后进行学习的。整式的有关知识是方程变形的基础,同时学好一元一次方程为后续的一次方程不等式、其他方程以及函数的学习打好了坚实的基础。
3、加强探究性学习。
促进学习方式的转变,加强学习的主动性和探究性,是课程改革的目的之一。本章中有许多实际问题,丰富多彩的问题情境和解决实际问题的快乐可以激发学生对数学的兴趣。在本章的教学中,应注意引导学生从身边的问题研究起,主动收集寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流,在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法。通过探究学习激发学生积极思维,鼓励多种探究方法,促成活跃的探究氛围,提高课堂学习的效果。
五、教学中的几点思考
1、在本章教学时,由实际问题到具体知识,再讨论具体知识,这一顺序知识的自然形成过程一致,但刚开始教学时很多老师感觉思路比较乱,反映出对教学目标和重难点的把握不是很准确,通过教学研讨,确定整章的主线是通过建立一元一次方程模型来解决实际问题,那么由问题中产生具体的知识,再对知识的探究应该是符合学生的认知规律的。为了在一堂课中更加突出重点,在学习解法的时候,对实际问题的分析和研究应该略讲,首先要抓好基础的落实,一定要有足够的时间、适当的练习让学生掌握一元一次的解法。在学习了解法的基础上,后续的学习应该对实际问题的分析和研究进行必要的归纳总结,这样才能使学生真正掌握好本章知识。
2、由于学生在上个学段学习了简单的方程,所以学生对一元一次方程已经有了一定情况的了解。根据实际情况反映,小学教师对这一部分知识的教学要求比较高,大多数学生学习起来比较轻松,所以在解法学习时间安排上,有5个课时的时间是主要研究解法的,有2个课时的时间是主要研究和归纳如何利用一元一次方程解决一些十分熟悉的实际问题的。
3、在实际教学中,老师普遍反映学习利用一元一次方程解决实际问题时,学生的分层十分明显,学习基础好的学生能较快达到学习目标。但对学习基础不好的学生,则是一件十分困难的事情。个人认为在教学中要突出对实际问题的分析,强调列代数式,即如果把问题中的某个量用一个字母表示之后,对于问题中的其余的量,要求都能要关于这个字母的代数式表示。在分析的过程中,为了更清楚的找到问题中各个量之间的关系,可以适时地介绍利用图形和表格的方法去分析问题中的数量关系。
4、在落实一元一次方程的解法时,注意要有适当的重复练习,才能发现学生的问题并加以纠正,但是要注意避免学生陷入机械的重复训练。在教学中如果把解方程的本质和其中的算法和算理讲清楚的话,很多时候通过作业反馈,学生能够较熟练地掌握一元一次方程的解法的。
六、章末目标检测说明
本章单元测试设计了2份检测题,测试(a)主要是对基础性目标的检测,测试(b)则适当加大了对发展性目标与融通性目标的检测的比重。
解方程教学设计及设计意图篇七
教学目标:
1、使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。
2、使学生会用方程表示简单情境中的等量关系,培养学生的动手操作能力、观察能力、分析能力和解决实际问题的能力。
教学重点:方程的意义。
教学难点:正确区分等式和方程这组概念。
教学准备:简易天平、法码、水笔、橡皮泥、纸条、白纸、磁铁。
教学过程:
一、课前谈话:
同学们,你们平时喜欢干什么?你们喜欢玩吗?喜欢的`请举手?
这么多人喜欢玩,老师想问这么多同学中有人玩过玩过跷跷板吗?玩过的请举手,谁来说说玩跷跷板时是怎样的情景?(学生自由回答)
当两边的距离相等,重的一边会把轻的一边跷起来,两边的重量相等,跷跷板就平衡。
二、新授
1、玩一玩
谁想上来玩?
你能用一个数学式子来表示这时候的现象吗?(用水笔板书:20+20<50)
再在左边放一个10克的法码,这时天平怎么样?(平衡了)
看来我们还可以用式子来表示天平的平衡情况,你们想不想亲自来玩一玩?
给你们5分钟的时间,比一比哪个小组又快又好。
哪个小组把自己所写的式子拿上来展示出来。
(有不一样的都可以拿上来)
2、分类
你们对这些式子满意吗?
谁来说说你们是按照什么标准分的?
1、如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的指名上黑板分,其余的口头交流。
2、把学生写的式子分成两堆,让学生分]
师:你能把这一种再分成两类吗?怎么分?指名板演。
你们发现了这一类式子有什么特点?(揭示:含有未知数的等式)
象这样,含有未知数的等式我们把它叫做方程。这也是我们今天这堂课要学习的内容。出示课题。
3、理解概念
练习:你能举一个方程的例子吗?学生在本子上写一个。
回忆一下,我们以前见过方程吗,在哪见过?(学生展示交流)
4、巩固概念
老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为什么)
通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用x表示。
(2)未知数不一定只有一个。
一个方程,必须具备哪些条件?
5、比较辨析
师:含有未知数的等式叫方程,那么方程和等式有什么关系呢?
如果老师说,方程一定是等式。对吗?(结合板书交流)
等式也一定是方程。(结合板书交流)
也就是说:方程一定是(等式),但等式[不一定是(方程)]。
你能用自己的方式来表示方等式和方程之间的关系吗?
例如画图或者别的方式,小组合作,试一试。(用水笔画在白纸上,字要写得大些)
三、巩固
师:同学们的图非常形象地表示出了方程和等式之间的关系,
1、这些图你能用方程来表示吗?
师:这里还有一些有关我们学校的信息,谁来读一读。
3、新的谢桥中心小学,是苏州市内占地面积最大的小学之一。建筑面积约25000平方米,3幢教学楼的建筑面积一共约为19500平方米,平均每幢为c平方米,其它建筑面积为m平方米。你能选择其中一些信息列出方程来吗?(同桌交流)
四、小结
学了这堂课你有什么想说的吗?你有什么想对老师说的吗?
解方程教学设计及设计意图篇八
二、教材分析
关于方程和解方程的知识,在初等代数中占有重要地位。中小学生在学习代数的整个过程中,几乎都要接触这方面的知识。从这个意义上说,前一节学习用字母表示数为本节课学习方程和以后的解方程打下了接触。教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,通过逐步尝试,得出杯子和水共重250克。从而由不等到相等,引出含有未知数的等式称为方程。为提供更为丰富的感知材料,教材一方面由小精灵要求:你会自己写出一些方程吗?另一方面通过三位小朋友在黑板上写方程的插图,让学生初步感知方程的多样性。
三、学情分析
述生活中的等量情景。学生对于利用天平解决实际问题较感兴趣,而对于从各种具体情境中寻找发现等量关系并用数学的语言表达,则需要老师引导和同伴互助,需要将独立思考与合作交流相结合。
四、教学目标
1、知识与技能:结合情景,理解、掌握方程的意义。会用方程表示简单情境中的等量关系。
2、问题解决与数学思考:经历从生活情境到方程模型的建构过程,感受方程思想。
3、情感与态度:在学生的自主探究过程中,感受数学的魅力,培养学生的观察、描述、分类、抽象、概括、应用等能力。
五、教学重点
理解方程的含义,会用方程表示简单情景中的等量关系。
六、教学难点
用方程的思想刻画简单情境中的等量关系。
七、教学准备
多媒体课件。
八、教学流程
(一)感受等式,理解等式。
利用天平的直观性引导学生将生活中的情景用等式或不等式表达出来。
(二)对式子进行分类。
在引导学生想法的前提下,让学生自主对式子进行分类。
(三)引入方程概念。
(四)理解方程意义。
借助天平呈现出简单的相等的情景,让学生经历将生活情境转变成数学语言的过程。
(五)感受方程的价值。
(六)课堂小结。
九、教学过程
(一)感受等式,理解等式。
1、出示天平的图片,让同学们了解天平的基本功能,知道只有当两边放的物体重量相等时天平才会平衡。
师:我们一起用天平做个试验。
课件演示,天平左边放两个鸡蛋,右边放一本数学书,书和鸡蛋都放在天平的上方,不接触天平。
师:你觉得如果将书和鸡蛋放在天平上后,天平会发生怎样的变化?
【预设】学生会有不同的看法,一部分同学会认为无法判断,理由是不知道数学书和两个苹果谁重。
生:平衡。
生:40+40=80
2、出示两支篮球队比赛的图片,其中红队得分17分,蓝队得分24分。
师:你能用数学式子描述出红蓝两队比分之间的关系吗?生:1724
【预设】经过前面对数学书和鸡蛋重量的比较,学生已经能够想到,18+x和24之间的大小关系是不确定的,会有三种情况。
师:你是否能用式子表示出这三种关系呢?
生:如果红队进的球很少,那么比分还是没有蓝队高,18+x24;如果红队进的球很多,比分就会超过蓝队,18+x24;如果红队正好追上蓝队,那就是18+x=24。
生:等于小于和大于。
设计意图:利用直观的天平平衡,很容让学生初步感知物体质量之间自然产生的相等关系,等式是方程的生长点。而利用连续进球个数的数量不确定,则将未知数引入到式子中。
解方程教学设计及设计意图篇九
教学目标:
1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。
2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。
教学重点:理解等式的性质,理解方程的意义。
教学难点:利用等式性质和方程的意义列出方程。
教学准备:课件
教学过程:
一、预习测试
直接写出得数:
二、自主学习
1、交流预习作业,指名学生口答
2、出示天平
知道这是什么吗?你长大它是按照什么原理制造的吗?
说说你的想法。
如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?
3、教学例1,出示例1图。
你会用等式表示天平两边物体的质量关系吗?
50+50=100(板书)
说说你是怎样想的?
(1)指出等式的左边,等式的右边等概念。
(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)
能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)
3、教学例2,出示例2图
天平往哪一边下垂说明什么?(哪一边物体的质量多)
你能用式子表示天平两边物体的质量关系吗?
学生独立完成填写,集体汇报。
板书:
x+50100x+50200x+50=150x+x=200
如果让你把这四个式子分类,应分为几类?为什么?
指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)
知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)
说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)
4、讨论:等式与方程有什么关系?
小组讨论。
指出:方程一定是等式,但等式不一定是方程。
方程是特殊的等式。他们的关系可以用集合圈表示。
5、教学试一试
独立完成,完成后汇报方法。
让学生说一说,每题中的方程哪个更简洁一些?
三、多层练习
1、完成“练一练”第1题
独立完成判断后说说想法
2、完成“练一练”第2题,第3题
交流所列方程,说说你为什么这样咧?你是怎么想的?
3、完成练习一第1题。
能说说每个线段表示的意思吗?方程怎样列呢?
小组中交流列式。
4、完成练习一第2题
理解题意,说说数量关系式怎样的?
列出方程并交流
5、完成练习一第3题
四、课堂总结
通过学习,你有哪些收获?
五、作业
1、完成《补充习题》
42、每日一题
写出一些方程,并在小组里面交流
六、板书设计
方程
50+50=100x+50100x+50=150
x+50200x+x=200
七、预习布置:
八、教学反思
第一单元第二课时等式的性质
教学目标:
1、使学生在具体的情景中的初步理解“等式的两边同时加上或减去同一个数,所得的结果仍然是等式”
。会用等式的性质解简单的方程。
2、使学生在观察、分析和交流过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。
教学重点:会用等式的性质解方程
教学难点:对等式第1个性质的探索过程
教学准备:课件
教学过程:
一、预习测试
下面哪些是等式,哪些是方程?
二、自主学习
1、交流预习作业
(1)指名学生回答预习作业
(2)什么是等式?什么是方程?等式和方程有什么联系?
2、教学例3
(1)我们已经认识了等式和方程。今天这节课,将继续学习与等式、方程有关的知识。
你能根据天平两边的砝码质量写一个等式吗?(20=20)
现在的.天平是平衡的,如果将天平的左边加上一个10克的砝码,这时天平会怎样?(失去平衡)
要使天平恢复平衡可以怎么办?(在另一边加上一个10克的砝码,或拿走这个10克的砝码)添上一个10克的砝码。
解方程教学设计及设计意图篇十
教学目标:
1、结合具体情境,理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生理解方程及等式的意义。
3、感受方程与现实生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程:
一、创设情境,激趣导入。
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示)
我们应该保护这些濒临灭绝的珍稀动物,今天这节课,就以三种动物为话题,来研究其中的数学问题。
二、合作探究,获取新知。
(一)理解等式的意义。
找出白鳍豚这组资料的等量关系,用字母表示。
1、师:我们先来看白鳍豚的这组资料,你从中发现了那些信息?
1980年比多300只,这句话中有几个数量?你能用一个式子表示出这三个数量之间的关系吗?让学生在练习本上写一写,进行板书。
1980年只数―20只数=300只
1980年只数―300只=年只数
2004年只数+300只=1980年只数
2、请同学们根据这三个数量中的已知数和未知数,用含有字母的式子表示出2004年只数+300只=1980年只数这个数量关系,小组进行讨论、交流。(教师进行巡视,参与讨论。)
3、分析a+300=400,等号左边表示1980年只数,等号右边也是1980年的只数,像这样表示左右两边相等的式子,我们通常简称为等式。(板书:等式)
4、借助天平来研究等式。
(出示天平)你对天平了解多少?谁给大家介绍一下?
师:你观察的真仔细,天平是一种用来称量物体质量比较精密的仪器,当指针指在标尺的中央,天平就平衡了。
师:如果左盘放10克砝码,右盘放20克砝码,天平会平衡吗?怎样用式子表示这种关系?(1020)如何才能平衡呢?(左再放一个10克的砝码)
师:出示天平:左20克和x克,右50克,你能用一个等式表示天平左右两边的关系吗?(20+x=50)
师:我们知道一个等式可以表示出天平平衡时左右两边相等的关系,那在天平如何表示出x+300=400这个数量关系吗?(出示天平)
(二)理解方程的意义。
1、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。
师:继续看大熊猫的资料,你获得了哪些信息?根据这些信息,小组讨论以下三个问题:
(1)找出人工养殖的只数与野生的只数的关系,用文字表示出来。
(2)用含有字母的等式表示出这个关系。
(3)在天平上表示出这个等式。
小组合作探讨,汇报交流,得出:人工养殖的只数x10=野生只数
只。我们通过分析它们之间的等量关系得出了等式10x=1600。
2、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
师:继续看东北虎的资料,你获得了哪些信息?根据这些信息,你能像刚才那样提出数学问题吗?小组讨论解决,交流汇报。(1)只数×3+100=的只数。
(2)3×+100=1000或1000-3×=100(3)天平左盘3x和100,右盘1000。
我们通过分析它们之间的等量关系得出了等式3x+100=1000。
3、揭示方程的意义
师:刚才我们研究出这么多的等式,下面给它们分分类,怎么分呢?(含字母,不含字母)
我们把含有字母的等式,叫方程。这就是方程的意义。(板书:方程的意义)
师:同学想一想x+5是方程吗?2+3=5是方程吗?说明理由。
师:判断是不是方程,你觉得应符合什么条件?(含未知数,还必须是等式)
师:请同学们再思考:式子、等式、方程,它们之间的关系是怎样的?
三、巩固练习,加强应用。
看来同学们已经掌握了今天所学的知识,下面老师来考考你。
课件出示课本自主练习1,2,3,4。
四、回顾反思,总结提升。
通过这节课的学习,你有什么收获?
解方程教学设计及设计意图篇十一
1、知识与技能:
(1)掌握圆的标准方程。
(2)会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程。
(3)会判断点与圆的位置关系。
2、过程与方法:
(1)进一步培养学生用代数方法研究几何问题的能力。
(2)加深对数形结合思想的理解和加强待定系数法的运用。
3.情感、态度与价值观:
(1)培养学生主动探究知识、合作交流的意识。
(2)让学生感受数学,体验数学;从走入数学到走出数学,生活处处有数学,数学就在我身边,体会到数学知识、思想方法和精神来源于生活,还要服务于生活;寓思想教育于教学。让学生体会到数学的美以及数学的价值与魅力。