初一教案是针对初中一年级学生进行教学设计的详细计划,有助于提高教学效果。阅读以下初一教案实例可以帮助您更好地理解和掌握如何设计一份高质量的教案。
五年级数学因数与倍数教案篇一
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的'数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
五年级数学因数与倍数教案篇二
(课标人教实验教科书24页的学习内容)
一、教学目标
理解质因数和分解质因数的意义,并会用一种方法或自己喜欢的方法分解质因数。
二、教学重点、难点
重点:分解质因数
难点:准确分解
三、预计教学时间:1节
四、教学活动
(一)基础训练
【口答】
什么是质数?什么是合数?1是什么?
【解答题】
下面各数是质数还是合数?把你判断的填在指定的圈里。
质数合数
(二)新知学习
引入:今天,我们学习合数与质数之间关系
揭示课题-------分解质因数
【典型例题】
合数
1.看合数21
(1)有多少个因数?并写出:1、3、7、21
(2)回到今天讨论的问题是合数与质数之间的关系,排除1和它本身21,即1×21=21。
(4)质因数与因数的分别?(也就是1和合数做质因数,也就是分解质因数中不能有1和合数;什么数都可以做因数)
2.研究讨论合数的分解方法。
(1)“树枝”图式分解法。
(2)“短除法”分解质因数。
3.把27,51,57,87,81分解质因数
【小结】(分解质因数时,你认为应注意什么?)
(三)巩固练习(10题)
【基础练习】
1.判断下面的横式哪些是分解质因数?哪些不是?理由?
24=2×2×66=1×2×360=2×2×3×5
2.把分解不正确的改正过来。
【提高练习】
把16,12,45,56分解质因数。
【拓展练习】
把下面各数分解质因数,并分别写出它们所有的因数。
分解质因数因数
1515=
1818=
2020=
(五)教学效果评价(小测题2-3题)
把8,72分解质因数
五年级数学因数与倍数教案篇三
教学目标:
1、掌握2、5倍数的特征以及奇数和偶数的概念。
2、能够运用这些特征进行判断。
3、培养学生的概括能力。
教学重点:
1、是2、5倍数的数的特征。
2、奇数和偶数的概念。
教学过程:
1、复习:根据所学的因数和倍数知识,运用自己的座号说一句完整的话。如:我的座号是5,5是30的因数或5是1的倍数。
同座互说
指名说。
同学们,我们先去看一场电影,座位号是多少的同学应该从双号入口进。
2、游戏
(1)座号是2的倍数的同学起立。
(2)座号是5的倍数的同学起立,老师分别将2的倍数座号写在黑板左边,5的倍数座号写在黑板右边。
3、引入:2的倍数和5的倍数有哪些特征呢?今天进行研究(板书课题:2、5倍数的特征)。
(一)2的倍数的特征。
1、观察:左边集合圈里的2的倍数座号有什么特点?(个位上是0,2,4,6,8。)
2、举出几个2的倍数,看看符不符合这个特点?学生随口举例。
教师:谁能说一说是2的倍数的数的特征?
学生口答后,老师板书:个位上是0,2,4,6,8的数都是2的倍数。
3、奇数和偶数
出示课件:2的倍数的数,这些数的个位上的数有什么特点?
个位上是0、2的数,都是2的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇(ji)数。
老师指出:自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。习惯上称它们单数、双数。
4、练习:完成课本做一做,出示课件
下列数中,哪些是奇数,哪些是偶数?
33983559880123
3678808910006555656881
奇数有:33,355,123,8089,655,881。
偶数有:98,988,0,3678,1000,5656。
(二)5的倍数的特征。
2、学生自己动手在课本上找出5的倍数。
在下表中找出5的倍数,并涂上颜色。看看有什么规律。
教师:说一说5的倍数的特征?
个位上是___或___的数,是5的倍数。
板书:个位上是0或者5的数,都是5的倍数。
3、练习:完成课本做一做,出示课件
下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2的倍数也是5的倍数?
243567909915
6075106130521280
2的倍数:24,90,60,106,130,280。
5的倍数:35,90,15,60,75,130,280,
既是2的倍数也是5的倍数:90,60,130,280。
做完这道题,你有什么收获?
重点指出
个位上是0的数它既是2的倍数又是5的倍数.
现在问题怎么解决呢?两位同学都想得到它们?
提问:2的倍数有哪些?5的倍数呢?60和90是什么数?
谈话:今天,我们主要研究了什么?下面的时间,我们就围绕这些知识来练习几道题。
1、选出两张数字卡片,按要求组成一个数。
(1)组成的数是偶数;
(2)组成的数是5的倍数;
(3)组成的数既是2的倍数又是5的倍数;
2、用0、2、5三个数字组成一个三位数。
(1)。组成的数是2的倍数;
(2)。组成的数是5的倍数。
3、把下表中4的倍数涂上颜色。
4、下面的判断对吗?说说你的理由。
(1)个位上是2、4、6的数,都是2的倍数。
(2)个位上是1、3、5、7、9的数都是奇数。
(3)在全部自然数里,不是奇数就是偶数。
今天你有什么收获?
板书设计:
2和5的倍数特征
5的倍数:15、30、50、65,,,,个位上是0或5的数(偶数)是2的倍数:个位上是0、2、4、6、8的.数(奇数)不是2的倍数个位上是1、3、5、7、9的数2的倍数5的倍数作业纸:在5的倍数中画“”
五年级数学因数与倍数教案篇四
1、通过教学,使学生理解约分和最简分数的意义。
2、掌握约分的方法,并且能正确、熟练地进行约分。
3、通过学习向学生渗透恒等变换思想,培养学生的观察、比较和概括能力。
教学重难点
重点:
1.使学生理解约分和最简分数的意义。
2.掌握约分的方法,并能比较熟练地进行约分。
3.培养学生的观察、比较和归纳等思维能力。
难点:
能很快看出分子、分母的公因数,并能准确地判断约分的结果是不是最简分数。
教学工具
ppt课件
教学过程
一.复习导入,引出概念
师:同学们,我们已经学习了公因数,最大公因数以及分数的基本性质,让老师先来考考你吧!
课件出示:
师:你能根据我们学过的知识解决吗?
指名回答
追问:这里的2和3是分子分母的什么?(公因数)
师:你能说一说这是根据我们学过的什么知识解决的吗?
生:分数的基本性质
指名回答什么是分数的基本性质
让我们一起背一背分数的基本性质吧!
师:再来想一想怎样直接把18/24化成和它相等的3/4呢?(课件出示)
生:分子分母同时除以6.
师:这里的6是分子分母的什么?(最大公因数)
生:变小了
师:分数的大小变了吗?
生:没变
引出概念:像这样,把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。(板书课题)
请大家一起来读一读约分的概念。
生齐读。
师:你认为在约分的概念里哪句话最重要?
汇报:分数的大小不变
分数的分子分母都比较小
(板书这两句话)
今天我们就来学习约分的有关知识!
· 探究约分的方法
1. 课件出示例4。
把24/30化成分子和分母比较小,且分数大小不变的分数。
师:同学们先想一想,按照题目要求也就是把24/30怎么样?为什么?
汇报:把24/30约分,因为题目要求把这个分数化成分子分母比较小,而且分数大小不变的分数,这就是约分。
(鼓励,看来你对约分的概念理解的非常深刻)
师:现在请同学们自己试着对24/30进行约分,把约分的过程写在练习本上。
师巡视指导。
汇报并说出约分的方法。
(课件出示四种方法)。
师:同学们约分的方法可真多!谁来说一说这里的2﹑3﹑6是24和30的什么数呢?(公因数)
师:也就是说约分的时候我们要用什么数去除分子和分母?
生:用分子和分母的公因数去除
师:这就是约分的方法
课件出示:(在约分时,可以用分子分母的公因数去除)
继续约分之后是多少?
生:继续约分之后是4/5
追问:4/5还能继续约分吗?
生:不能,因为现在分子分母只有公因数1,分子分母不能变的更小。
回答的非常棒,请把掌声送给他!
师:也就是说约分时能用公因数1去除分子分母吗?(不能)
这样看来约分的方法(在约分时,可以用分子分母的公因数去除)还有需要补充的吗?
生:1除外。(课件出示)
师:像4/5这样,分子分母只有公因数1的分数,叫做最简分数。(板书)
强调:在约分时我们通常要约成最简分数。
师:你还能举出一些最简分数的例子吗?
生思考后汇报,并说出为什么是最简分数。
师:现在我们再来看一看约分后等于最简分数4/5的这两种方法,第三种方法经过几次约分得到4/5?(两次)
第四种方法呢?(一次)
你更喜欢哪种方法呢?能说说你的理由吗啊?
生:我更喜欢第四种,因为它一次就能约成最简分数。
师:你能给大家说说这里的分子分母同时除以了谁?
生:分子分母的最大公因数
你说的非常棒!请把掌声送给她!
师:在约分的时候,如果能够很快看出分子分母的最大公因数,就用最大公因数去除,这样一次就能约成最简分数。
2. 对于这两种约分成4/5的方法我们还有更简便的写法,请同学们结合着问题自学这种简便写法。然后试着在练习本上写一写。
指名汇报
师同步板书。
· 巩固练习
指名回答,集体订正。
强调什么是最简分数。
剩下的分数你能用刚学的简便写法约成最简分数吗?请完成在课本上。
指名回答,引导说出分子分母同时除以最大公因数。
2. 老师这儿还有两行分数,你能继续把不是最简分数的化成最简分数吗?请大家完成“做一做”的第二题,先约分再连线。
指名汇报,集体订正。
下面让我们用今天学的知识解决生活中的问题吧!
指名读题。
独立完成。
汇报。
强调按要求用最简分数表示。
2. 在三年级的时候我们学习了同分母分数比较大小的方法,这儿有两组分数,(课件出示)
问:它们的分母相同吗?你能用今天学的知识解决吗?
独立思考。
指名回答。
强调用约分的方法。(对于用把分子分母变大的方法也给予赞赏)。
四.全课总结
一节课的时间马上到了,通过今天的学习你有哪些收获呢?
生汇报。
师:同学们今天的收获可真多!在浩瀚的分数海洋里,最简分数就像一粒粒的金子,通过约分把一个分数化成最简分数往往能起到事半功倍的效果,在以后的学习中同学们会有更深刻的体会!
五年级数学因数与倍数教案篇五
我在教学时做到了以下几点:
(1)密切联系生活中的数学,帮助学生理解概念间的关系。
(2)改动呈现倍数和因数概念的方式。我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
(3)根据学生的实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。