安全是生命之基,牢记在心。安全标语要言简意赅,用简练的语言表达出明确的安全警示或提醒。小编为大家整理了一些常见的安全标语,希望能够帮到大家。
专业乘法分配律的教学反思(汇总14篇)篇一
乘法分配律是北师大版小学数学四年级上册第三单元最后一节的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元教学的一个重点,也是本单元内容的难点,教材是按照发现问题--提出假设--举例验证--归纳结论等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。
2.在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。
3.本节课有一定的亮点,但其中出现了不少问题:学生参与的积极性没有预想中那么高。可能与我相对缺乏激励性语言有关。也有可能今天的题材学生不太感兴趣。
乘法分配律是第三单元的一个难点。在理解、掌握和运用上都有一定难度。因此如何上好这一课,让学生真正地理解乘法分配律,并在理解的基础上运用好它?我觉得要注重形式上的认识,更要注重意义上的理解。因为单从形式上去记住乘法分配律是有局限性的,以后在运用乘法分配律的时候,遇到一些变式如:99×24+24会变得难以解决。注重意义的理解,能让学生从更高的层面上去理解乘法分配律,那么将来无论形式上怎么变化,学生都能轻松运用乘法分配律。
北师大版的教材注重学生的探索活动,在探索中让学生自己去发现的规律,才能让他们真正地理解。本课是“探索与发现”的第三节课了,学生已经有了一定的探索能力。因此本课的设计完全围绕着学生的自主活动在进行。
总体上我的教学思路是由具体——抽象——具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。
专业乘法分配律的教学反思(汇总14篇)篇二
乘法分配律教学反思。这节课的设计。我是从学生的生活问题入手,利用学生感兴趣的买奶茶展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”,让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。
为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
专业乘法分配律的教学反思(汇总14篇)篇三
在设计本节课的过程中,我一直抱着“以学生发展为本”的宗旨,试图寻找一种在完成共同的学习任务、参与共同的学习活动过程中实现不同的人的数学水平得到不同发展的教学方式。结合教学设计,对本节课进行以下反思:
一、在教学这节课时,我以计算引入,复习旧知,然后抛出一个较为复杂的算式“46×276+276×54”如何计算更简便,一下子学生们鸦雀无声了,他们陷入了沉思中,有的抓脑袋,有的摇头,很是难为,这是,我很“自豪”的告诉他们,老师能在一秒钟内说出得数,你们相信吗?想知道老师的诀窍吗?一下子,把学生的求知欲和好奇心调动了起来。
二、让学生根据自己的爱好,选择自己喜欢的方法列出来的算式就比较开放。出示情景图后,请学生自己思考,交流。通过计算发现两个形式不一样的算式,结果却是一样的。()这都是在学生已有的知识经验的基础上得到的结论,是来自于学生已有的数学知识水平的。通过用自己喜欢的方式来表达乘法分配律从而加以内化。学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律。
三、总体上我的教学思路是由具体――抽象――具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,我都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
四、在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去发现规律,验证规律,表示规律,归纳规律,应用规律。教师“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考。这对十岁左右的孩子来说,其激励作用无疑是无比巨大的,而“爱思、多思、会思”的学习习惯,会让孩子一生受益。
在本节课的教学设计上,我体现新课标的一些理念,注重从学生的实际出发,把数学知识同生活实际紧密联系起来,让学生在体验中学到知识。通过创设情境,设置悬念,激发学生的学习欲望和学习兴趣。在练习题的设计上,我力求有针对性,有坡度,同时也注意知识的延伸。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等。教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。
专业乘法分配律的教学反思(汇总14篇)篇四
乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
(1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
(2)初步感受乘法分配律能使一些计算简便。
(3)培养学生分析、推理、概括的思维能力。
1、总体上我的教学思路是由具体——抽象——具体。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。
2、从学生已有知识出发。
教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。
3、鼓励学生大胆猜想。
猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的。这个过程是教会学生学习与掌握探索方法的过程,是培养学生学习品格的过程。
4、师生平等交流。
教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。
5、将学生放在主体位置。
把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。
在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:
1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。
专业乘法分配律的教学反思(汇总14篇)篇五
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
2、提供自主探索的机会。
一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。
在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。
专业乘法分配律的教学反思(汇总14篇)篇六
让学生在生动具体的情境中学习数学,这是新课标倡导的新理念。我联系学生的生活实际,创设了学生熟悉的购买家具的场景,配上我生动的语言叙述,一下子就把学生代入到了一个有数学味的问题情境中,吸引了所有学生的注意。紧接着的问题如果你是小红,你想买什么家具呢?根据小红家的需要,你们能提出哪些数学问题?更是激发了学生的思维,学生个个积极动脑,跃跃欲试。在学生充分提出各种问题的基础上,我选择了有代表性的一个问题让学生独立解决,极大地激发了学生的计算热情。这一环节的教学,让学生经历了因用而算、以算激用的过程,将算与用紧密结合。
首先让学生通过独立计算,交流计算方法,叙述计算过程等一系列的笔算乘法的技能训练,形成一定的算理。然后通过比较124和2132这两题,它们最大的区别是什么?在乘的时候,有什么不同呢?如果是四位数、五位数乘一位数,你认为该怎么乘呢?这两个问题的讨论、交流,引导学生进行整理反思,让学生能通过两位数乘一位数迁移到三位数乘一位数,进而自然联想到四位数、五位数乘一位数的计算方法其实都是一样的,从而帮助学生将零散的知识串起来,有利于学生数学模型的建立。
需要改进的地方是:在学生探索出笔算方法后,我因为担心学生没有听懂,怕学生做错,说错,故而引导太细,学生的学习主动性调动的不够。如果我能充分相信学生,大胆放手,让学生独立地去想,去做,去说,相信学生的。表现会更出色。
专业乘法分配律的教学反思(汇总14篇)篇七
《乘法分配律》是四年级数学下册第三单元中的一节教学内容,一直以来的教学中,我认为这节课的教学都是一个教学难点,学生很难学好。
我认为其中的不易可以从三个方面来说:其一,例题仅仅是分配律的一点知识,在课下的练习题中还存在不少乘法分配律类型的题(不过,这好像也是新课改后教材的表现)。如果让学生仅仅学会例题,可以说,你也只是学到了乘法分配律的皮毛;其二,乘法分配律只是一种简单的计算方法的应用,所有用乘法分配律计算的试题,用一般的方法完全都可以计算出来,也就是说,如果不用乘法分配律,学生完全可以计算出结果来,只不过不能符合简便计算的要求罢了,问题是学生已学过一般的方法,学生在计算时想的最多的还是一般的计算方法;其三,本节课的教学灵活性比较大,并没有死板板的模式可以来死记硬背,就是学生记住了定律,在运用时,运用错了,也是很大的麻烦,从题目的分析到应用定律都需要学生的认真分析及灵活运用。
针对以上自己分析可能出现的问题,,确定从以下两个方面时行教学:
第一,以书本为依托,学好基础知识。
有一句话叫做“万变不离其宗”。虽然课下还有多种类型题,但它们都与书上的例题有着亲密的联系,所以教学还是要以书本为依托。在教学中,我引导生通过观察两个不同的算式,得出乘法分配律的用字母表示数:a×b+a×c=a×(b+c),在引导学生经过练习之后,我还强调学生,要做到:a×(b+c)=a×b+a×c。用我自己的话说,就是:能走出去,还要走回来。再次经过练习,在学生掌握差不多时,简单变换一下样式:(a+b)×c=a×c+b×c,走回来:a×c+b×c=(a+b)×c。如此以来,学生算是对乘法分配律有了个初步的认识,知道是怎么回事,具体的运用还差很远,因为还有很多的类型学生并不知道。于是我就在第二节课进行了第二个方面的教学。
第二,以练习为载体,系统巩固知识。
针对乘法分配律还有多种类型,例题中也没讲到的情况,我上网查资料,加上并时的一些认识,把乘法分配律分为五类,并对每类进行简单的分析提示,附以相应的练习题印发给学生,让学生进行练习。
专业乘法分配律的教学反思(汇总14篇)篇八
今天静下心来观看了省赛课中葛老师执教的.《乘法分配律》一课。她巧妙引领。葛老师非常自然的借助孩子们喜爱的农场游戏,引入问题“谁能帮老师算算一共有多少菜?你能列出综合算式吗?先求什么,后求什么?”一方面教师问题的指向性简练明确可以引导学生列出综合算式,另一方面借助情景能有效的帮助学生理解算式的道理,明确意义。更为巧妙的是此情景内容丰富可以列出不同的算式:
2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4为后面的“观察、分类和探究”做好铺垫。
大胆放手。在第一个“求菜”的情境中,是在教师的引导下学生顺利完成了学习的过程,然而后面的“求花”和“求果树”就是放手让学生自己探究了,很自然的激发了学生的探究欲望,分别列出了两组算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。
这样在学生喜爱的农场情景中,巧妙的引发出六道算式,为进一步的观察和探究埋下了伏笔。
得出6个算式后,葛老师再次抛出问题:“这六个算式让你分分类,你打算分几类?理由是什么?”然后葛老师又引导学生同桌先讨论,然后集体汇报,于无形中让学生经历了各个层面的探究活动。让学生观察——猜想——举例验证——,和从“特例”进行验证等一系列的活动,最后归纳出一普遍性的规律。
当结论得出后,葛老师并不是将字母表示进行简单的灌输,而是巧妙的借助点子图将用字母表示乘法分配律的过程变为因需而设,从而呼之欲出。最后教师还通过乘法的意义加深学生对乘法分配律的理解,并且教师还通过两组以前学过的两位数乘一位数和两位数乘两位数来打通乘法分配律与以前知识的联系。
总之,本节课在学习方式上自主学习与合作探究并存,在思维发展上,教师引导与放手相结合,整个学习过程,因需而设,充满了探究。
专业乘法分配律的教学反思(汇总14篇)篇九
计算教学是小学数学教学中的重要组成部分,几乎每一册的教材中都有计算的`教学,而其中的“简便计算”教学更是计算教学的一部“重头戏”。学好简便运算,不仅能降低计算的难度,而且能提高计算的正确率和速度,更重要的是,能使学生将学到的定理、定律、法则、性质等运算规律融会贯通,达到学以致用的目的,从而能培养学生良好的计算习惯。
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学习这几个定律中的难点。所以,对于乘法分配律的教学,我没有把重点放在规律的数学语言表达上,而是注重引导学生积极主动的参与感悟、体验、发现数学规律的过程,并且学会用辩证的思维方式思考问题,培养良好的思维习惯,真正落实学生的主体地位。
在教学中,我主要做到了以下几点:
兴趣是形成良好学习习惯的催化剂。以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,也就是根据例题图,提出问题:买5件夹克衫和5条裤子,一共要付多少元?通过两种算式的比较,唤醒了学生已有的知识经验,并有意识的蕴含新知识的教学,激发了学生的学习兴趣。
配养学生主动探究的学习习惯,是数学老师在数学课上的重要任务。先让学生根据提供的问题,用不同的方法解决,从而发现(65+45)×5=65×5+45×5这个等式,让学生观察,初步感知“乘法分配律”。再展开类比:假如我们要选择另外两种服装,买的数量都相同,一共要付多少元?你还能用两种方法来求一共要付的钱吗?让学生在再次解决问题的过程中进一步感受乘法分配律的存在。然后我引导学生观察,初步发现规律,再引导学生举例验证自己的发现,得到更多的等式,继续引导学生观察,直到发现规律,同时质疑是否有反例,再一致确定规律的存在,并得出字母公式。
对于乘法分配律的教学,我把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。让学生在课堂上经历了数学研究的基本过程:即感知——猜想——验证——总结——应用的过程,学生不仅自主发现了乘法分配律,掌握了乘法分配律的相关知识,而且掌握了科学探究的方法,数学思维的能力也得到了发展。
学生在学习数学知识的过程中能学会与人合作交流,这也是一种良好的学习习惯,而倡导课堂教学的动态生成是新课程标准的重要理念。在数学学习中,每个学生的思维方式、智力、活动水平都是不一样的。因此,为了让不同的学生在数学学习中都得到发展,我在本课教学中立足通过生生、师生之间多向互动,特别是通过学生之间的互相启发与补充来培养他们的合作意识,实现对“乘法分配律”的主动建构。学生在这样一个开放的环境中博采众长,共同经历猜想、验证、归纳知识的形成过程,共同体验成功的快乐。既培养了学生的问题意识,又拓宽了学生思维,增强思维的条理性,学生也学得积极主动。
在练习题型的设计上,我基本尊重课本上知识的体系,在第4个练习中,三组题目的对比练习主要是巩固学生对乘法分配律的理解,让学生通过对比体会计算的简便。而在计算的过程中会选择更合理的方法进行计算,这有助于帮助学生提高计算的正确性,有利于学生养成良好的计算习惯。我在设计教学时,先出示一组题,在学生发现它们之间的联系后,有意让女生做简便的一题,让学生初步感知女生做的题比较简便,然后再出示第二组,还是有意让女生做简便的一题,所以还是女生优先,至此我引导学生发现:有时先加再乘比较简便,有时先乘再加比较简便,可以根据实际情况的不同,作出合理的选择,甚至可以根据乘法分配律先做适当改写,使计算更简便。
这样设计,使学生经历了两轮比赛,对运用乘法分配律可以使计算简便有了初步的体验,并且产生了浓厚的学习兴趣,对下一课时运用乘法分配律进行简便计算打下了良好的基础。最后增加了一个变式题:“5件夹克衫比5条裤子贵多少元?”这是乘法分配律的变式,这在第三课时将会碰到这种题型,所以这里先埋下一个伏笔。由基本题到变式题,有机地联系在一起。使学生逐步加深认识,在弄清算理的基础上,学生能根据题目的特点,灵活地运用所学知识进行练习。从课堂反馈来看,学生热情较高,能够学以致用。学生通过自己的努力以及和同学的交流合作,思维能力得到了发展。
教学过程是一个不断探讨的过程,不断追寻的过程。作为一名数学老师,希望能在与学生有限的接触时间内帮助学生更快更好地养成良好的数学学习习惯,使我们的学生终身受益。这是一个值得我永远追求并为之努力的目标。
专业乘法分配律的教学反思(汇总14篇)篇十
这节课的设计,我是从学生的生活问题入手,利用学生感兴趣的问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”,让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的'认识。
为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
专业乘法分配律的教学反思(汇总14篇)篇十一
《乘法分配律》一课是四年级上册第四单元的教学内容,它相对于加法交换律、结合律,乘法交换律和结合律来说会比较抽象,学生较难于理解。因此把本课的教学重点定位为“探索并发现乘法分配律,理解乘法分配律的意义”,让学生经历“观察算式——仿写算式——解释规律——应用规律”的过程。
一、比赛导入激发探究欲望。
课前创设比赛情境:老师能很快说出下面几道题的得数,你信吗?不信的同学敢跟我比一比吗?(出示:28×70+72×70(125+10)×834×101)在我既对又快的说出结果时,孩子们都很惊讶,于是我因势利导:刚才的比赛老师算得快,是因为老师有一个取胜的秘诀,它可以使计算简便,你们想知道吗?学完这节课,你就能发现其中的秘密。学生个个跃跃欲试,瞬间充满探究的欲望,很好地激发了学生学习的兴趣。
二、自主探索发现规律。
在解决“一共贴了多少块磁砖?”中,学生列出了四个算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在让学生观察四个算式之后,先引导学生将四个算式进行分类并说明分类的标准。通过这个环节,学生对于相等的两个算式的特征有了进一步的了解,知道将3×10+5×10和(3+5)×10分为一类,将4×8+6×8和(4+6)×8分为一类,是因为它们的数字都一样,都是由3、5、10组成或是由4、6、8组成的,了解乘法分配律中有3个数;如将3×10+5×10和将4×8+6×8分一类,将(3+5)×10和(4+6)×8分为一类的,则从中明白一边都是两个积相加,另一边则是两个数的和与一个数相乘。通过这个分类活动,让学生自主发现规律,为理解乘法分配律做了很好的铺垫。接着再让学生仿写算式,总结规律并解释规律,最后再应用规律揭示课前比赛中老师获胜的奥秘。
三、错因分析防患未然。
(1)(6+30)×7=7×6+7×30。
(2)25×(4+60)=25×4+60。
(3)16×5×8=16×5+16×8。
(4)15×3+15×7=(15+15)×(3+7)”让学生进行分析、判断并修正。特别是第3题,让学生对比乘法分配律和乘法结合律的数学模型,找出其中的区别,加以比较,从而发现模型左边乘法结合律是两个数的积,而乘法分配律是两个数的和,而模型右边乘法结合律是连乘的形式,而乘法分配律是两个积相加的形式。这样对比,加深对乘法分配律模型的认识和对其意义的理解。分析错因后,还不忘让学生说说:“你想对小马虎说什么?”来提醒告诫学生,除了要养成认真细心的习惯外,还要运用好乘法分配律,注意分配律与结合律的区别,将错误扼制在摇篮里。
不足之处:虽然学生对于乘法分配律的理解比较到位,较好地达成了教学目标,但如能进行适时拓展,让学生通过“两个数的和与一个数相乘来联想到两个数的差与一个数相乘,两个数的和除以一个数及两个数的差除以一个数是否都可以应用乘法分配律这个数学模型?”会使课堂更丰满,更有深度。
将本文的word文档下载到电脑,方便收藏和打印。
专业乘法分配律的教学反思(汇总14篇)篇十二
1、情境的创设激发了学生的计算热情。
让学生在生动具体的情境中学习数学,这是新课标倡导的新理念.我联系学生的生活实际,创设了学生熟悉的购买家具的场景,配上我生动的语言叙述,一下子就把学生代入到了一个有数学味的问题情境中,吸引了所有学生的注意。紧接着的问题如果你是小红,你想买什么家具呢?根据小红家的需要,你们能提出哪些数学问题?更是激发了学生的思维,学生个个积极动脑,跃跃欲试。在学生充分提出各种问题的基础上,我选择了有代表性的一个问题让学生独立解决,极大地激发了学生的计算热情。这一环节的教学,让学生经历了因用而算、以算激用的过程,将算与用紧密结合。
2、多层的设计有利于学生数学模型的建立。
首先让学生通过独立计算,交流计算方法,叙述计算过程等一系列的笔算乘法的技能训练,形成一定的算理。然后通过比较124和2132这两题,它们最大的区别是什么?在乘的时候,有什么不同呢?如果是四位数、五位数乘一位数,你认为该怎么乘呢?这两个问题的讨论、交流,引导学生进行整理反思,让学生能通过两位数乘一位数迁移到三位数乘一位数,进而自然联想到四位数、五位数乘一位数的计算方法其实都是一样的,从而帮助学生将零散的知识串起来,有利于学生数学模型的建立。
需要改进的地方是:在学生探索出笔算方法后,我因为担心学生没有听懂,怕学生做错,说错,故而引导太细,学生的学习主动性调动的不够。如果我能充分相信学生,大胆放手,让学生独立地去想,去做,去说,相信学生的表现会更出色。
专业乘法分配律的教学反思(汇总14篇)篇十三
《乘法分配律》一课是四年级上册第四单元的教学内容,它相对于加法交换律、结合律,乘法交换律和结合律来说会比较抽象,学生较难于理解。因此把本课的教学重点定位为“探索并发现乘法分配律,理解乘法分配律的意义”,让学生经历“观察算式——仿写算式——解释规律——应用规律”的过程。
课前创设比赛情境:老师能很快说出下面几道题的得数,你信吗?不信的同学敢跟我比一比吗?(出示:28×70+72×70(125+10)×834×101)在我既对又快的说出结果时,孩子们都很惊讶,于是我因势利导:刚才的比赛老师算得快,是因为老师有一个取胜的秘诀,它可以使计算简便,你们想知道吗?学完这节课,你就能发现其中的秘密。学生个个跃跃欲试,瞬间充满探究的欲望,很好地激发了学生学习的兴趣。
在解决“一共贴了多少块磁砖?”中,学生列出了四个算式:3×10+5×10、4×8+6×8、(3+5)×10、(4+6)×8后,在让学生观察四个算式之后,先引导学生将四个算式进行分类并说明分类的标准。通过这个环节,学生对于相等的两个算式的特征有了进一步的了解,知道将3×10+5×10和(3+5)×10分为一类,将4×8+6×8和(4+6)×8分为一类,是因为它们的数字都一样,都是由3、5、10组成或是由4、6、8组成的,了解乘法分配律中有3个数;如将3×10+5×10和将4×8+6×8分一类,将(3+5)×10和(4+6)×8分为一类的,则从中明白一边都是两个积相加,另一边则是两个数的和与一个数相乘。通过这个分类活动,让学生自主发现规律,为理解乘法分配律做了很好的铺垫。接着再让学生仿写算式,总结规律并解释规律,最后再应用规律揭示课前比赛中老师获胜的奥秘。
(1)(6+30)×7=7×6+7×30。
(2)25×(4+60)=25×4+60。
(3)16×5×8=16×5+16×8。
(4)15×3+15×7=(15+15)×(3+7)”让学生进行分析、判断并修正。特别是第3题,让学生对比乘法分配律和乘法结合律的数学模型,找出其中的区别,加以比较,从而发现模型左边乘法结合律是两个数的积,而乘法分配律是两个数的和,而模型右边乘法结合律是连乘的形式,而乘法分配律是两个积相加的形式。这样对比,加深对乘法分配律模型的认识和对其意义的理解。分析错因后,还不忘让学生说说:“你想对小马虎说什么?”来提醒告诫学生,除了要养成认真细心的习惯外,还要运用好乘法分配律,注意分配律与结合律的区别,将错误扼制在摇篮里。
不足之处:虽然学生对于乘法分配律的理解比较到位,较好地达成了教学目标,但如能进行适时拓展,让学生通过“两个数的和与一个数相乘来联想到两个数的差与一个数相乘,两个数的和除以一个数及两个数的差除以一个数是否都可以应用乘法分配律这个数学模型?”会使课堂更丰满,更有深度。
专业乘法分配律的教学反思(汇总14篇)篇十四
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。
其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
乘法分配律是一节比较抽象的概念课,教师可以根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。
具体是这样设计的:先创设佳乐超市的情景调动学生的学习积极性,通过买“3套运动服,每件上衣21元,每条裤子10元,一共花多少元?”列出两种不同的式子,他们确实能够体会到两个不同的算式具有相等的关系。这是第一步:通过资料获取继续研究的信息。(虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。)。
第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,教师不要急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。
第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。