编写教案是教师备课的重要内容,可以提高教师的备课水平和教学质量。提供一些大班教案范文,帮助大家更好地编写自己的教学计划。
实用小学数学式与方程教案大全(15篇)篇一
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
实用小学数学式与方程教案大全(15篇)篇二
1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。
2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。
4、培养学生规范书写和自觉检验的好习惯。
1、对等式的基本性质一的理解和运用。
2、掌握解形如x+a=b的方程的依据、步骤和书写格式。
3、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
1、掌握解形如x+a=b的方程的依据、步骤和书写格式。
2、较为熟练地运用形如x+a=b的方程解决简单的实际问题。
后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。
在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。
这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。
教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。
最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。
模式方法:观察――实验――讨论――交流――概括结论。
作业设计:自主练习1-3题。
1、教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。
2、教学时,要关注学生的算术思维向方程思维的转变。
3、在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。
4、教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。
本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。
实用小学数学式与方程教案大全(15篇)篇三
《解简易方程》是九年义务教育中六年制小学数学教材第九册第四单元第二节内容。
本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。
从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。本节课的内容又为后面学习解方程和列方程解应用题做准备。这为过渡到下节的学习起着铺垫作用。
从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。
(1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。
(2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力,掌握解方程的一般步骤,会解简单的方程。
(3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。
根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的所以我认为这节课的重点及难点是:理解方程的解和解方程的含义和掌握解方程的方法。
大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。基础知识掌握牢固,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,自主探讨。但有个别学生基础知识差,上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。
在教学中,学生往往更习惯运用算术方法解题,这是因为他们之前长期用算术的思路思考问题,再学列方程时,往往会受到干扰。因此在教学中要注意过渡和对比,克服干扰,多让学生体会列方程解题的优越性。而在整节课的设计上,我想着重突出这么几点。
1、通过创设有效的情境串,激发学生兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重点、难点。根据题目中信息的叙述方式,通过顺向思考列出数量关系。由于是刚接触方程,列出文字性的数量关系对于学生正确地列出方程是很重要的。
2、坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。借助小组合作、自主探究等形式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,实现预设的教学目标。
(1)抛出问题
师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?
(生:含有未知数的等式叫方程。)
【设计意图】让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。
(2)判断下面哪些是方程
师:你能判断下面哪些是方程吗?
(1)a+24=73(2)4x36+17a=""12
(4)72=x+16(5)x+85(6)25÷y=0.6
(生:1、4、6是方程。)
师:说说你的理由?
(生:它含有未知数,而且是等式)
【设计意图】在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。
1、方程的解和解方程
(1)看图写方程
师:说的真好,那么请同学观察这幅图(p57主题图)从图中你知道了什么?
(生:我知道杯子重100克,水重x克,合起来是250克。)
师:你能根据这幅图列出方程吗?
生:100+x=250.(板书)
【设计意图】运用知识迁移,结合直观图例,应用方程的性质,让学生自主探索列出方程。
(2)求方程中的未知数
师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)
学生可能出现的回答
生2:根据数的组成100+150=250,所以x=150.
生3:100+x=250=100+150,所以x=150.
生4:假如在方程左右两边同时减去100,那么也可得出x=150.……
【设计意图】这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。
(3)验证方程中的未知数,引出方程的解和解方程两个概念。
师:同学们用不同的方法算出x=150,那么它对不对呢?
生:对,因为x=150时方程左边和右边相等。
师:这时我们说“x=150”是方程“100+x=250”的解,刚才我们求x的过程就叫做叫解方程。(板书:方程的解、解方程)请同学在书中找到这两个概念(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)并齐读。
【设计意图】学生齐读的时候,把解方程和方程的解的概念板书在黑板上,并且在学生读的过程中学生可以加深印象。
(4)辨析方程的解和解方程两个概念
师:你们能说出“方程的解”和“解方程”有什么区别么?讨论一下,然后汇报。
生:方程的解是未知数的值,它是一个数,而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。
【设计意图】通过组内交流,让学生自己总结出“方程的解”和“解方程”的区别,提高学生总结归纳的能力和小组合作精神。
2、例1解析
师:(出示例1图)图上画的是什么?你能列出方程吗?
生:x+3=9(板书:x+3=9)
(1)引导学生思考怎样解方程。
师:怎样解这个方程?我们可以借助天平(电脑显示)
师:我们解方程的目的是求想x,怎样使天平一边只剩x呢?
生:天平两边同时减去3个球。(电脑显示)
师:天平两边还平衡吗?怎样反映在方程上呢?
生:方程两边同时减3。(结合学生回答板书)
师:为什么同时减3而不是其它数呢?
生:方程两边同时减3就可以使方程一边只剩x。
(2)检验方程的'解。
师:x=6是不是方程的解呢?
生:是,因为x=6使方程左边是6+3=9,右边是9,左右两边相等,所以x=6是方程x+3=9的解。
师:以后解方程时,我们要养成检验的习惯,力求计算准确。
【设计意图】自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
(3)强调解方程的格式步骤
解方程要注意:
(1)先写“解”,等号要对齐。
(2)做完后要注意检验。
【设计意图】再一次强调,可以让学生加深印象,掌握解方程的正确格式和步骤,再今后的解题中不会出现格式错误的问题。
3、巩固练习
师:你会学老师这样解方程吗?
请同学们解方程x+3.2=4.6,x+19=30。
先独立完成,再招学生板书练习集体订正
【设计意图】在理解例1的解法后再完成本题,巩固对同种题型解题方法的认知,使学生对知识掌握的更牢固。
4、小组讨论怎样解方程x-2=15,x-1.8=4
师:刚才的题同学们都做的非常好,那么下面的题你们会解么?(出示题目:x-2=15,x-1.8=4)请同学们小组讨论怎样解方程x-2=15,x-1.8=4并说出你这样做的根据。
学生小组讨论并解出上面两道方程,并板书、汇报自己的解题过程。
师:在这个过程中哪些是解方程,哪些是方程的解。
生:我们计算的过程是解方程,而x=17和x=5.8是方程的解。
【设计意图】通过学生自主学习探究出不同类型方程的解法,让学生享受到自学的乐趣,明白解这类方程就是要在方程的左右两边同时加上或者减去一个相同的数,让方程的左右两边仍然相等。与此同时再复习巩固下方程的解和解方程的概念。
1、填空
(1)含有()的()叫方程。
(2)使方程左右两边相等的()叫方程的解。
(3)求()叫做解方程。
(4)x-15=20这个方程的解是()
指名学生口头回答。
2、解下列方程
x+0.3=1.8x-1.5=4
x-6=7.6x+5=32
学生独立完成并集体订正。
3、列方程解决问题
学生独立列方程解答,集体订正。
【设计意图】巩固本节课所学习的内容,检查学生的掌握情况。
师:这节课你有什么收获?
课后请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。
实用小学数学式与方程教案大全(15篇)篇四
教学内容:
教科书p13例9、p14练一练、p16练习三第1~3题。
教学目标:
1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点:
掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
教学难点:
能正确找出应用题中数量间的相等关系。
教学过程:
一、谈话导入。
今天研究一个与颐和园有关的数学问题。
二、学习新知。
1.p13例9。
(1)指名读题,分析数量关系。
用线段图表示出题目中数量之间的关系吗?
学生尝试画图,集体交流。
根据线段图得到:水面面积+陆地面积=颐和园的占地面积。
启发:这大题目中有两个未知数,我们设谁为x呢?
(2)列方程并解方程。
指名学生列出方程,鼓励学生独立求解。
如果用x表示陆地面积,那么可以怎样表示水面面积呢?
追问:这道题可以怎样检验?
检验:a、72.5+72.53=290(公顷)b、217.572.5=3。
(3)观察我们今天学习的'方程,与前面的有什么不同?
小结:像这样含有两个未知数的问题我们也可以列方程来解答。
(4)学生独立完成p14练一练第1题。
三、巩固练习。
1.p14练一练第2题。
教师引导学生找出数量关系式。
陆地面积2.4-陆地面积=2.1。
2.解方程。
2x+3x=60。
3.6x-2.8x=12。
100x-x=198。
3.根据线段图列出方程。
4.解决实际问题:(列方程解)。
(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
在做这道题时你认为应注意什么呢?
四、全课小结。
在解答这一类应用题时应注意什么?
五、课堂作业。
p16练习三第2-3题。
实用小学数学式与方程教案大全(15篇)篇五
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时。
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程。
(一)导入新课。
(板书:大象的体重=石头的重量)。
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课。
探究一:学习等式性质。
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程。
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)。
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=1223+x=45。
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测。
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x–19=2。
(2)x-12.3=3.8。
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计。
x+5=7x-5=7。
解:x+5-5=7-5解:x-5+5=7+5。
x=2x=12。
等式的两边同时加上或者减去同一个数,等式仍然成立。
实用小学数学式与方程教案大全(15篇)篇六
后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。
在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。
这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。
教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。
最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。
模式方法:观察――实验――讨论――交流――概括结论。
作业设计:自主练习1-3题。
实用小学数学式与方程教案大全(15篇)篇七
教学目标:
1、让学生初步经历列方程解决一步计算的实际问题的学习过程,掌握列方程解决实际问题的一般步骤货物方法,会列方程解决一些简单的实际问题。
2、让学生在学习活动中初步感受方程思想,丰富解题策略,发展数学思考,培养分析问题、解决问题的能力。
3、让学生进一步感受数学在解决现实问题中的作用,体验用新的`策略解决生活中数学问题的快乐,增强学习数学的信心。
教学过程:
一、导入:
我们已经认识了方程,学会解只含有加、减法和乘、除法一步计算的过程。在实际生活中,用列方程、解方程的方法也能把一些分析数量关系比较困难的问题,很容易解决。这节课我们就学习列方程解决简单的实际问题。(板书课题)。
二、新课:
1、教学例题。
(1)出示例题。
师:列方程解决实际问题和我们过去解决实际问题一样,首先要审题。(板书:审题)。
题中告诉我们哪些已知信息?要我们解决什么问题?
(2)过去我们解决实际问题时,审题后要分析数量关系,列方程解决实际问题也要分析数量关系,所不同的是,现在我们要找一个数量关系式。(板书:找等量关系式)。
(3)过去我们解决问题时是想怎样从已知的推算出未知的,现在我们可以把未知的数设为x。(板书:设未知数)可以这样写:先写“解”字,表示下面是解题的过程,而设小军的跳高成绩为x米这句话必须写下来,否则,人家就不知道你下面列出的方程是什么意思。
(4)谁能根据我们找到的等量关系式列出方程?(板书:列方程)。
(5)下面我们用解方程的方法就可以找到问题的答案了。(板书:解方程)。
请学生上黑板板书。
强调:因为在设的前面已经写上了“解”字,所以在接方程时不再需要写“解”字了。
(6)、因为这里是解决实际问题,在求出答案后,还应该像过去解决实际问题一样写上答句。(板书:写答句)。
(7)、在问题解决后要检验答案是否正确、合理。突出两点:第一是看方程列的是否合理,第二是看解方程是否正确。(板书:检验)。
2、练一练:第一题。
3、找出题中的等量关系式。
(3)、一个正方形的周长是27.2厘米,这个正方形的边长是多少厘米?
4、试一试:
蓝鲸是世界上最大的动物。一头蓝鲸重165吨,大约是一头非洲象的33倍。这头非洲象大约重多少吨?(列方程解答)。
5、练一练:第二题。
三、全课总结:
2、通过这节课的学习你还有那些收获?还有什么问题?
实用小学数学式与方程教案大全(15篇)篇八
1.在拼搭立体图形的过程中,体验到从不同的位置观察立体图形,所看到的形状可能不同。
2.能正确辨认从正面、侧面、上面观察到的立体图形的形状。
能正确辨认从正面、侧面、上面观察到的立体图形的形状。
先让学生搭出书上的立体图形,分别从正面、上面、侧面进行观察,再填一填,然后组织交流。注意引导观察,第一个图形从上面和正面观察到的形状是相同的。
先想一想,然后独立搭一搭,看一看,连一连,再交流讨论。
通过本题练习,你有什么发现?
可以让学生先想一想,再搭一搭,看一看,填一填。
下面的立体图形从正面、上面、侧面看到的形状分别是什么?在方格纸上画一画。
教师先示范怎样在方格纸上画图?再出示第4题。
先引导学生理解题意,然后让学生独立在方格纸上画一画,全部画完后搭一搭进行验证。
通过今天的学习,你有什么收获?
实用小学数学式与方程教案大全(15篇)篇九
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想。
方法:通过将实际问题转化成数学问题,培养学生的建模思想;。
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系。
教学重点。
教学难点。
找出已知量与未知量之间的关系及相等关系。
教具资料准备。
教师准备:课件。
学生准备:书、本。
教学过程。
一、创设情景引入新课。
观察图片引课(见大屏幕)。
二、探究。
探究销售中的盈亏问题:。
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润。
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)。
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系。
三、探究一。
分析:售价=进价+利润。
售价=(1+利润率)进价。
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍。
获利10%,则该商品的标价为元.
注:标价n/10=进(1+率)。
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的。
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为元.
四、小结。
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断。
小组研究解决提出质疑。
优生展示讲解质疑。
五、作业布置:
板书设计。
相关的关系式:例题。
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
实用小学数学式与方程教案大全(15篇)篇十
今天听了涂老师的《认识方程》这节课,让我感受颇深。认识方程原来是五年级下册的第一单元的第一课内容,但是涂老师把它放在四年级班级上。虽然是四年级的孩子,但是完全能接受。学生不仅理解了什么是方程,找到未知数与已知数之间的等量关系,就可以列出方程。还学会判断,在脑海中建立方程模型。听完这节课后有以下几点想法:
一、关注实际生活,激发学生的学习兴趣。
涂老师这节课的整个教学过程中的任何一个环节的学习内容都是现实的、与学生已有知识体系有密切联系的。如课前导入以师生之间的轻松愉快的聊天形式给学生明确了“小a已知数”和“小b未知数”。再如给学生介绍天平,虽然学生在三年级科学课上认识天平,但很少有机会进行操作,涂老师在学生已有的知识经验上又给学生介绍了天平的使用方法,并介绍了天平平衡的知识,动态和静态的平衡知识,学生在亲身体验的基础上通过观察对比,体会到等式的意义、不等式的意义、方程的意义,也深刻理解了方程意义中的两个关键点:未知数、等式。整个环节,清晰、自然,真正做到了在无痕中让孩子们知其然,也知其所以然。
二、巧妙设计题组,小题体现大功效。
涂老师在巩固练习的时候设计了一组开放性练习,让学生体验什么是方程,出现两个不同的算式6x+=78,36+=42先让学生独立思考,接着让学生辩一辩其中的原因,感知相同的数量关系和相同的数据才会列出相同的方程,展示方程的魅力。相对于学生来讲其实最难的是找到实际问题中的“等量关系”,我想这是学生数学学习的转折点,以往数学学习的是确定的数量或图形,而进入代数领域之后就进入了“关系”的学习,这样的内容更加抽象,是数学学习的“分水岭”,学生的数学成绩也由此产生了分化。而通过这个小题组,我觉得学生收获了很多,对方程意义的理解也很深刻,懂得列方程需要从实际问题中存在的相等的数量关系思考,而其间学生在说、在想、在辨、在创造,作为听课老师我很是高兴,看到孩子们学得轻松,学有收获,也锻炼了能力。
三、适时见针插缝,感受数学文化。
虽然这一课时教科书上没有安排相关史料,但涂老师在课上确适时地给学生安排了文化大餐,一个是未知数的历史发展,一个是方程的'历史发展,最好还引用数学家陈省身教授说过的名言“数学有‘好’数学和‘不大好’的数学之分,方程,是‘好’的数学的代表”作为本课结束语,让数学文化贯穿于《认识方程》这节课的课前、课中和课尾。
总之,教学有法,教无定法,我相信只要我们的教立足于学生的学,我们的课堂将更精彩,更丰富多彩!
将本文的word文档下载到电脑,方便收藏和打印。
实用小学数学式与方程教案大全(15篇)篇十一
4、态度、情感、价值观。
4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情、
一、复习引入。
学生活动:列方程、
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
整理、化简,得:__________、
问题(2)如图,如果,那么点c叫做线段ab的黄金分割点、
整理,得:________、
二、探索新知。
学生活动:请口答下面问题、
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的'多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
解:去括号,得:
移项,得:4x2-26x+22=0。
其中二次项系数为4,一次项系数为-26,常数项为22、
解:去括号,得:
x2+2x+1+x2-4=1。
移项,合并得:2x2+2x-4=0。
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4、
三、巩固练习。
教材p32练习1、2。
四、应用拓展。
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可、
证明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、归纳小结(学生总结,老师点评)。
本节课要掌握:
六、布置作业。
实用小学数学式与方程教案大全(15篇)篇十二
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(2)会用因式分解法解一元二次方程
【教学重点】一元二次方程的概念、一元二次方程的一般形式
【教学难点】因式分解法解一元二次方程
【教学过程】
(一)创设情景,引入新课
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)
2:一元二次方程的一般形式(形如ax+bx+c=0)
3:讲解例子
4:利用因式分解法解一元二次方程
5:讲解例子
6:一般步骤
(三)小结
(四)布置作业
实用小学数学式与方程教案大全(15篇)篇十三
一、教学内容:
教材第94页例1、“练一练”,练习二十―第1―4题。
二、教学要求:
使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。
三、教学过程:
一、复习导入。
1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)。
2、根据下列句子说出数量之间的相等关系。
杨树和柳树一共120棵。
杨树比柳树多120棵。
杨树比柳树少120棵。
3、出示线段图:梨树:
桃树:
从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?
4、出示条件:母鸡的只数是公鸡的5倍。
5、在括号里填上含有字母的式子。(练习二十一第1题)。
6、交流:板演,你是根据怎样的数量关系来解答的?
7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)。
二、教学新课。
(1)齐读。
(2)这道题已知什么条件,要求什么问题?边问边画出线段图。
(3)“梨树和桃树各有多少棵”是什么意思?
这道题要求的数量有两个,你认为用什么方法做比较简便?
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。
(5)交流。
(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。
校对板演。还可以怎样求桃树的棵树?
(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。
2、教学想一想。
现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)。
一生板演,其余齐练。
集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?
3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的关键是什么?(找出数量之间的相等关系。)。
4、小结。
从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。
三、巩固练习。
1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?
2、只列式不计算。
一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?
(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?
3、选择正确的解法。
明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?
(1)解:设鸡和鸭各有x只。x+3x=56。
(2)解:设鸡有x只,鸭有3x只。x+3x=56。
(3)解:设鸭有x只,鸡有3x只。x+3x=56。
商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?
(1)解:设梨有x千克,苹果有3.6x千克。3.6x-x=26。
(2)解:设梨有x千克,苹果有3.6x千克。3.6x+x=26。
四、课堂总结。
老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。
五、作业:
练习二十一/2―5。
实用小学数学式与方程教案大全(15篇)篇十四
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学i必修本(a版)》第94—95页的第三章第一课时3、1、1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形、它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3、1、2)加以应用,通过建立函数模型以及模型的求解(3、2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系、渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
知识与技能:
1、结合方程根的几何意义,理解函数零点的定义;
2、结合零点定义的探究,掌握方程的实根与其相应函数零点之间的'等价关系;
3、结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法。
情感、态度与价值观:
2、培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3、使学生感受学习、探索发现的乐趣与成功感。
教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
导学案,自主探究,合作学习,电子交互白板。
(一)、问题引人:
请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?
学生活动:回答,思考解法。
学生活动:思考作答。
设计意图:通过设疑,让学生对高次方程的根产生好奇。
(二)、概念形成:
预习展示1:
学生活动:观察图像,思考作答。
教师活动:我们来认真地对比一下。用投影展示学生填写表格。
一元二次方程。
方程的根。
二次函数。
函数的图象。
(简图)。
图象与轴交点的坐标。
函数的零点。
问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与。
轴交点的坐标以及函数零点的关系吗?
学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。
教师活动:我们就把使方程成立的实数x称做函数的零点、(引出零点的概念)。
根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?
学生活动:经过观察表格,得出(请学生总结)。
2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标、
3)方程有实数根函数的图象与轴有交点函数有零点。
教师活动:引导学生仔细体会上述结论。
再提出问题:如何并根据函数零点的意义求零点?
学生活动:可以解方程而得到(代数法);
可以利用函数的图象找出零点、(几何法)、
设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。
(三)探究性质:
(四)探索研究(可根据时间和学生对知识的接受程度适当调整)。
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]。
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高。
第五阶段设计意图:
一是为用二分法求方程的近似解做准备。
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
(五)、课堂小结:
零点概念。
零点存在性的判断。
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间。
(六)、巩固练习(略)。
实用小学数学式与方程教案大全(15篇)篇十五
今天,我观看了赵震老师的《认识方程》一课。这是一节朴实而又深刻的数学课,在赵老师的引领下,学生经历了一堂轻松而又收获颇多的课堂,被数学的魅力深深地打动。
一、将抽象的概念直观化。
这是一堂数学概念的学习,在课堂上,赵老师充分应用多种方式,帮助学生较好地建立了“等式”、“不等式”以及“方程”的概念。一方面,赵老师借助多媒体,充分应用了天平的直观效果,描述苹果、草莓、桔子等水果的质量,使学生能借助表象进行抽象的描述。同时在描述的过程中,赵老师并不让学生的思维停留于直观。“看谁能把自己的想法清楚、简单地表达出来?”使学生的思维逐渐从直观走向了深刻。整个学习过程,赵老师通过电脑模拟称量情景的创设,引导学生观察,用式子描述关系,从而感知“不等式”、“等式”和方程“的意义和概念,充分以学生学习活动为主体进行新知的学习。
二、注重数学文化的渗透。
赵老师在课中注重学生数学知识的`拓展,向学生介绍方程的历史,了解到数学可以描述生活中的一些现象,除了注重让学生感受数学与生活有着密切的联系,还教育学生学习就像吃饭一样,不能一口气吃个胖子,即我们是站在古人的肩膀上来学习的。
三、巩固练习,由浅入深。
课堂上,赵老师通过多种练习,巩固方程的意义和列方程的方法。根据图意列方程、根据题意列方程和乘坐公交车上下车的实际问题的练习,让学生能够用方程描述生活中的现象,进一步巩固对方程意义的理解和抓住等量关系列方程的方法。