心得体会是对自己成长历程的综合评价,可以帮助我们更好地面对和解决类似问题。以下是一些成功人士的心得体会,希望对大家有所启发和帮助。
最热会计大数据心得体会大全(14篇)篇一
会计是一门记录、归档和分析财务数据的学科,而大数据则是指体量巨大、种类繁多、速度快的数据集合。近年来,随着技术的发展和应用范围的扩大,大数据和会计的结合成为了一个热门话题。作为一个学习会计的学生,我意识到了解会计和大数据的重要性,并从中获得了一些心得体会。
首先,了解会计和大数据可以帮助提高财务分析的精确度和速度。在过去的会计工作中,人们依靠手工提取、整理和分析财务数据。这种方法效率低下,容易出现错误。而有了大数据技术,会计师可以通过数字化工具快速获取和处理大量的财务数据,从而更准确地分析、判断和预测企业的财务状况。例如,通过对大数据的分析,会计师可以发现潜在的经营风险、市场机会和改进的空间,为企业的发展提供重要的参考依据。
其次,了解会计和大数据可以帮助提升财务决策的智能化水平。财务决策是企业管理中最重要的环节之一,它的准确性和及时性直接影响到企业的利益和竞争力。然而,传统的财务决策方法往往需要大量的人工操作和时间。而有了大数据技术,企业可以及时、准确地获取财务信息,从而更好地辅助决策者做出明智的决策。例如,通过对大数据的分析,企业可以了解市场需求、产品销售情况和竞争对手的表现,为产品定价、市场推广和生产计划等方面提供数据支持,提高决策的科学性和效果性。
另外,了解会计和大数据有助于提升会计信息披露的透明度和可信度。会计信息披露是企业向外界传递财务信息的重要手段,它对投资者、债权人和其他利益相关方的意义重大。然而,传统的会计信息披露方式存在信息不对称、可操纵性高等问题。而有了大数据技术,企业可以通过对财务数据的挖掘和分析,提高信息披露的透明度和准确度,并且可以通过区块链等技术确保信息的不可篡改性和可信度。这样一来,投资者和其他利益相关方可以更好地了解企业的财务状况和经营情况,增强对企业的信任,从而促进经济的健康发展。
最后,了解会计和大数据还可以拓宽会计从业者的工作领域和技能需求。随着大数据技术的发展和应用,越来越多的企业和组织都需要拥有会计和大数据技术双重能力的从业者。会计师要熟悉基本的会计知识和技能,同时还要具备数据分析、数据挖掘和信息安全等方面的知识和技能。了解会计和大数据,可以帮助会计从业者更好地适应职场的变化和需求,提高自身就业竞争力。
总之,了解会计和大数据对于今天的会计从业者来说是非常重要的。它不仅可以提高财务分析的精确度和速度,提升财务决策的智能化水平,还可以提升会计信息披露的透明度和可信度,拓宽会计从业者的工作领域和技能需求。因此,作为会计学生,我们应该注重学习会计知识的同时,也要关注和了解大数据技术的应用,不断更新自己的知识和技能,以适应时代的发展和变化。只有不断学习,才能更好地把握机遇,迎接挑战。
最热会计大数据心得体会大全(14篇)篇二
在最近参加的大数据会计讲座中,我有了很多收获和体会。大数据技术在会计领域的应用,能够快速解决会计人员在数据分析和处理方面的难题,并且大大提高了工作的效率。
会计数据的处理实际上就是数据的三个阶段:采集、处理和分析。大数据技术的出现,可以使得这三个阶段的速度都得到提高。在采集数据这一环节中,传统的数据采集方式往往偏向于人肉搜集,需要进行一遍遍手动的整理,非常繁琐。而大数据技术则通过网站爬虫、数据库查询等方式,实现了对数据的快速自动化采集。同时,分析阶段也可以通过大数据技术进行更加精细的分析,这样的分析结果更加详尽,更加符合实际的业务场景的需求。
当财务人员快速分析数据后,可以使用可视化系统进行数据展现,并结合图表和报表进行数据让业务部门,更好的理解和把握数据结果。这个过程,就像是财务人员和业务部门之间的同步作战一样。数据真正发挥其价值,需要经过深层次剖析和掌握细节,大数据分析技术恰好可以做到这一点。
同时,讲座还介绍了大数据技术在会计风险管理中的应用。针对在会计核算过程中,可能存在的会计舞弊风险、数据造假等问题,大数据技术可以通过数据清洗、标准化、转化等方式实现数据的统一性,从而提高数据的可靠性和准确性;并根据数据的变异程度,确定相应的风险等级。通过这样的方式,可以快速识别并防范风险,避免潜在的损失。
通过这次大数据会计讲座,我深刻理解了大数据技术在会计领域的优势,这不仅是技术创新和工具发展,也是会计大数据应用步入新的阶段,这种应用也正在和会计真正有机结合起来。同时,随着大数据技术的不断发展和完善,相信它们会在会计领域起到越来越重要的作用,促进财务行业的发展和进步。
最热会计大数据心得体会大全(14篇)篇三
大数据时代的来临,给各行各业都带来了巨大的变革和挑战,会计领域也不例外。为了适应这一新的形势,我参加了大数据会计实训课程,从中受益匪浅。在这篇文章中,我将分享我在实训过程中的心得体会。
第二段:认识到大数据时代对会计的重要性。
在实训过程中,我深刻认识到大数据时代对会计的重要性。传统的会计方法不能再满足分析和决策的需求,而大数据技术能够处理庞大的数据量,并从中提取有价值的信息。这对于会计人员来说是一个巨大的机遇,也是一项挑战。我们需要学会掌握各种数据分析工具和技术,以更好地应对日益复杂的会计问题。
在实训课程中,我们学习了如何使用大数据技术进行会计实践。通过使用数据挖掘、机器学习和人工智能等工具,我们能够对公司的财务状况进行更深入的分析和预测。这不仅有助于提高财务报告的准确性和可靠性,也能够为企业的战略决策提供重要的参考依据。我们还学习了如何使用大数据技术来发现潜在的欺诈行为和风险,并进行有效的应对措施。这些技术的应用对于保护企业和投资者的利益有着重要的意义。
第四段:充分利用大数据技术的挑战与机遇。
虽然大数据技术给会计带来了许多挑战,但也带来了许多机遇。利用大数据技术,我们能够更好地识别和利用业务机会,发现潜藏的价值。例如,通过对大数据进行分析,我们可以识别出哪些产品或服务在市场上最受欢迎,有助于企业更好地制定营销和销售策略。同时,大数据技术也有助于会计人员提升自己的能力和竞争力。掌握这些技术,我们可以更好地满足企业和市场对会计人员的需求,提高自己的职业发展和薪资待遇。
第五段:总结与展望。
通过参加大数据会计实训课程,我深入理解了大数据时代对会计的重要性。大数据技术的应用给会计实践带来了巨大的影响,也为会计人员提供了更多的机遇和挑战。在未来,我将继续学习和掌握大数据技术,提升自己的能力,并在会计领域中发挥更大的作用。同时,我也希望能够看到越来越多的会计人员意识到大数据技术的重要性,并积极探索其在工作中的应用,为企业的发展和社会的进步做出更大的贡献。
最热会计大数据心得体会大全(14篇)篇四
近年来,大数据技术的迅猛发展给各行各业带来了巨大的改变,会计行业也不例外。为了适应这一变革,越来越多的会计机构开始将大数据技术运用到实际操作中。作为一名大数据会计实训的学员,我深刻感受到了这种变革给会计行业带来的巨大机遇和挑战。
第二段:机遇与挑战并存。
大数据技术的运用给会计行业带来了前所未有的机遇。传统的会计工作过程中,往往需要将大量数据手动输入和整理,耗费了大量的时间和资源。而通过大数据技术,我们可以利用自动化的方式快速处理和分析海量的数据,极大地提高了工作效率。同时,大数据技术还能够挖掘出更加准确和深层次的数据信息,为企业的决策提供更加科学的依据。
然而,也不能忽视大数据技术运用所带来的挑战。首先,大数据的处理和分析需要具备较高的技术水平,这对于传统的会计从业人员来说,需要进行一定的技能转型和学习。此外,由于大数据技术的迅速发展和更新换代,会计从业人员需要不断跟上技术的步伐,继续提升自己的专业知识和技能。这对于会计从业人员而言,既是一种机遇,也是一种挑战。
第三段:拓展视野和思维方式。
参与大数据会计实训,让我从一个新的角度审视会计工作。在实训中,我们通过学习和实践,了解到大数据会计所涉及的各种技术和工具,如数据挖掘、数据可视化等。这些知识的学习让我打开了眼界,看到了会计工作的更大空间。传统的会计工作注重的是数据的记录和整理,而大数据会计则更加注重数据的分析和挖掘,通过数据来实现对企业经营状况和未来发展趋势的准确把握,从而为企业的决策提供有力支持。这种转变在一定程度上改变了我对会计工作的认识和思维方式。
第四段:提高专业能力和解决问题的能力。
参与大数据会计实训,让我在技术层面上得到了提高,也培养了解决问题的能力。实训中,我们需要通过大数据技术来解决会计工作中遇到的问题,这要求我们既要熟悉会计知识和工作流程,又要掌握相应的技术和工具。实践中,我们遇到了各种各样的问题,如数据的不准确性、数据的缺失等。通过与团队成员的合作,以及和导师的交流讨论,我们最终找到了解决问题的方案,并取得了良好的效果。这一过程不仅让我更加熟悉了大数据会计的实践操作,也提升了我解决问题的能力。
第五段:展望和总结。
大数据技术将继续影响和改变会计行业,而作为会计人员,我们需要不断学习和适应这种变革。通过大数据会计实训,我深入了解到了大数据技术对会计工作的影响和应用,拓展了自己的专业视野和思维方式。同时,通过实践操作,我提高了自己的专业能力,并培养了解决问题的能力。相信在这个快速变化的时代,只有不断学习和发展,才能在会计行业中不断前行。
最热会计大数据心得体会大全(14篇)篇五
在我所上的大数据会计讲座中,我获得了很多新的知识和技能。本次课程主要围绕着大数据技术如何在会计领域应用展开,从理论到实践,我们接受了一系列系统、全面、深入的学习。以下是我在此次课程中的一些心得体会。
首先,我深刻认识到了大数据技术在会计领域中的重要性。会计工作日益增多,账目越来越复杂,数量也越来越庞大。传统的会计处理方式已经无法满足现今的需求,这时大数据技术的大规模处理,就能够为会计工作提供优异的解决方案。我们在课程中学习了如何利用大数据技术来完成会计数据分析、会计数据挖掘、会计数据处理等工作。这种新型的会计技术能够为企业提供全方位的数据支持,从而更好地推动企业的发展。
其次,我对大数据技术在会计领域中的操作流程和操作方法有了更深入的理解。我们学习了会计数据的抓取、清洗、处理与分析等一系列操作流程,同时也掌握了各种数据挖掘技术和数据分析模型。在实践环节中,我们还学习了如何使用数据可视化工具,将数据以图表的形式展现出来,从而让数据更加直观,更好地支持决策。这种技能对于人才竞争也有很大的优势,毕业之后也能在很多领域进行应用。
最后,通过这次课程,我也受益匪浅,了解了很多关于大数据技术的发展方向,以及在未来工作中如何深度运用大数据技术。由此可以看出,大数据技术在会计领域中的应用前景是广阔的。在未来,如何更好地将大数据技术与会计应用进行融合、开展深度合作,将成为企业更好地发展的保证,也将成为会计人才更好就业发展的有力推手。
总之,本次大数据会计讲座为我打开了新的思路,也开拓了我的眼界。这次课程的学习,让我了解了不同领域的发展动态,也让我深入体会到大数据技术对于企业发展的重要性。作为一名在校大学生,我将更加努力学习,提高自身素质,准备好迎接未来的竞争与挑战。
最热会计大数据心得体会大全(14篇)篇六
最近,我参加了一次大数据会计讲座。通过这次讲座,我深刻认识到了大数据对会计领域的巨大影响。
首先,从数据处理的角度来看,大数据技术可以帮助会计人员高效地处理原始数据、提取有价值的信息,并通过不同的算法和模型进行分析和预测,这对于会计工作者来说是一个巨大的福音。
其次,大数据技术可以帮助会计人员更好地了解企业的经营情况。通过大数据分析,会计人员可以了解到企业的销售情况、库存水平和生产效率等信息,这些信息可以帮助企业做出更明智的决策,提高竞争力。
另外,大数据技术还可以帮助会计人员发现企业的经营风险。通过大数据分析,会计人员可以发现企业可能存在的风险,比如供应商风险、客户信用风险和市场风险等。这些信息可以帮助企业提前预警,并采取相应的措施。
总的来说,大数据技术给会计工作者带来了巨大的机遇和挑战。会计工作者需要学习适应大数据时代的技能和知识,与时俱进,保持前瞻性。
在讲座的互动环节中,我和其他听众进行了深入的讨论,分享了个人的心得和体会。通过和其他听众的交流,我再次深刻认识到了大数据对我们的行业产生的重要影响,也感受到了大数据技术的强大和神奇。
总之,这次大数据会计讲座让我受益匪浅。我将会对自己的学习和工作提出更高的要求,不断提高自身的素质,以应对日益复杂的市场环境和行业发展趋势。
最热会计大数据心得体会大全(14篇)篇七
职责:
1、制定全渠道商品(新老品)的供需计划(年度-季度)。
2、制定库存商品的销售计划,并对库存的消化进度进行管控。
3、主导完成商品数据库的建立与持续完善。
4、通过协助各部门的业务数据梳理,及时反映数据进展,为业务提升提供支持;
6、配合上级完成其他各类数据挖掘分析,并促进转化。
任职要求:
2、具备较强的数据分析和处理能力;
3、熟练使用办公软件,熟悉常用的数据库和大数据技术工具;
4、较强的逻辑思维能力,强烈的数据敏感度。
最热会计大数据心得体会大全(14篇)篇八
“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。
我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。
在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!
看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。
既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。
大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。
在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。
对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。
从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。
心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。
之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。
看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。
我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。
大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。
最热会计大数据心得体会大全(14篇)篇九
近年来,随着科技的迅速发展和互联网的普及,大数据已经逐渐成为企业决策和市场营销的利器。在这个信息爆炸的时代,大数据的应用给企业带来了巨大的商机和竞争优势。然而,如何正确运用和分析大数据成为了当前企业面临的难题。在我从事市场营销工作的过程中,我慢慢积累了一些关于大数据营销的心得体会。
第二段:数据收集与分析。
在大数据时代,数据的收集和分析是非常重要的环节。对于企业来说,了解消费者的购买行为和偏好是制定营销策略的基础。通过互联网和移动设备等信息渠道的广泛应用,企业可以获得大量的数据资源。在数据收集方面,企业需要通过合法的途径获得用户的授权,并且保护用户的隐私安全。对于数据分析,企业需要依靠先进的数据分析工具和技术,将庞大的数据量转化为有意义的商业价值,并深度挖掘数据背后的关联关系和消费者行为特点。
第三段:个性化营销。
大数据时代的一个重要特点是个性化营销的实施。通过大数据分析,企业可以准确了解消费者的需求和兴趣,从而为其提供更加个性化的产品和服务。个性化营销不仅可以提高消费者的购买满意度,还可以增加企业的用户粘性和忠诚度。例如,在电商平台,通过分析用户的浏览和购买记录,企业可以为用户推荐感兴趣的商品,提高用户的购买转化率。个性化营销的实施需要企业具备良好的数据分析能力和精准的营销策略。
第四段:精准投放与实时监控。
大数据营销的另一个重要优势是精准投放和实时监控。通过大数据分析,企业可以更加精确地确定目标受众和投放渠道,避免资源的浪费和效果的缺失。同时,企业可以依靠实时数据监控市场反馈,及时调整营销策略和方案,提高市场反应的速度和精度。例如,在线广告投放中,企业可以根据用户的兴趣和行为特点进行定向广告投放,提高广告的点击和转化率。精准投放和实时监控可以帮助企业更好地运用有限的资源,取得更好的市场效果。
第五段:隐私保护与道德问题。
大数据营销的广泛应用也伴随着隐私保护和道德问题的关注。企业在收集和利用大数据的同时,需要遵守相关法律法规和行业准则,保护用户的隐私权益。同时,企业也需要审慎操作和使用大数据,避免滥用和泄露用户的个人信息。在大数据营销实施的过程中,企业需要时刻关注道德和社会责任,坚持合法、透明和公平的原则,维护消费者利益和行业形象。
结尾段。
总之,大数据营销是当下企业必须面对的挑战和机遇。对于市场营销人员来说,正确运用和分析大数据是提升竞争力和效率的重要手段。我深刻体会到,在大数据时代,通过科学合理地利用大数据,企业可以更加深入地了解消费者需求,提供更好的产品和服务,从而取得竞争优势。然而,在推动大数据营销的同时,也需要关注隐私保护和道德责任,切实维护消费者的权益。只有在科技与道德的双轮驱动下,大数据营销才能为企业带来长久的商业价值和社会效益。
最热会计大数据心得体会大全(14篇)篇十
随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。
二、数据清理。
数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。
三、数据转换。
数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。
四、数据集成和规范化。
数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。
五、总结。
数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。
最热会计大数据心得体会大全(14篇)篇十一
随着数字化时代的到来,大数据已逐渐成为政务管理的重要手段。政府可以通过收集、分析和利用大数据,为政策制定、资源配置和服务优化等方面提供有力支撑。大数据技术的应用,已成为政府有力的助手,改变了政府运行方式,提升了政府服务效能,促进了政府与公民之间的联系和交流。
政府需要面对许多复杂的问题,大数据技术的应用能够为政府决策提供实时、准确的信息和数据支持。政府可以以大数据技术为依托,通过数据挖掘、分析和模拟等手段,对社会、经济、环境等方面进行深入探索,进而提炼出有效的决策方案。同时,大数据技术的应用可以帮助政府调整政策,优化民生服务,提升政府的形象和信誉。
政府管理需要处理大量的数据信息,信息数量庞大且多样化。大数据技术的应用,可以帮助政府建立数据中心,通过数据采集、分类、存储、共享和加工等方式,实现对数据的精细管理。通过数据的精细管理,政府能够更高效地运营和管理政府服务,优化公共资源配置,提升效能。
在政府服务中大数据有着广泛而深远的应用。比如,在社会保障领域,政府可以利用大数据技术实现对各类社会保障信息的分析,以便更好地管控和优化社会保障服务。在城市管理中,大数据可为政府提供精准的交通流量、环境质量、城市治理问题等信息,以便制定更加有效的城市管理政策。大数据技术的应用,将会推动政府服务的质量与效率,更好地满足公民日益增长的各种需求。
第五段:大数据技术应用面临的挑战。
大数据技术的应用,还面临着安全、隐私等方面的挑战。政府在使用大数据技术时必须保证数据的安全和保密,防止数据泄露、滥用、篡改等问题的发生。同时,政府还需考虑合规性和道德等方面的问题,确保数据的合法性与道德性。只有在解决好这些问题,政府才能充分发挥大数据技术的应用潜力,更好地服务公民。
总结:
大数据技术的应用,对政府服务、政策制定、资源配置等方面都有非常重要的意义。同时,使用大数据技术,也存在多重挑战,政府应该注重解决这些挑战,才能更好地利用大数据服务于公民。在数字时代,随着大数据技术的不断发展和应用,政府将会以更加高效的方式运行和管理,为公民带来更加精准、便捷的服务。
最热会计大数据心得体会大全(14篇)篇十二
大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代。
欢迎大家阅读。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
最热会计大数据心得体会大全(14篇)篇十三
大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。
在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。
首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
百度百科中是这么解释的:大数据(bigdata),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。
大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。
二、开始学习之旅。
在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!
如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。
最热会计大数据心得体会大全(14篇)篇十四
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。