教学安排是指将教学内容合理划分,并安排在不同课时和课次中的具体安排。教案范文是指导教师制定教案的参考资料,可供教师借鉴。明确教学目标、设计教学内容、选择教学方法、制定教学评价等是制定教案的步骤。教案范文能提供丰富的教学素材,为教师备课提供便利。
实用初一数学整式教案范文(14篇)篇一
1.经历探索规律并用代数式表示规律的过程,能用代数式表示以前学过的运算律和计算公式.
2.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识,体会数形结合的思想方法.
【学习重点】。
能用代数式表示以前学过的运算律和计算公式,会用字母表示数.
【学习难点】。
体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
情景导入生成问题。
【说明】以学生喜欢的游戏的方式引入,让学生感受数学的奥妙,激发学生的求知欲.
自学互研生成能力。
先认真阅读教材第78页最上方的图3-1及与图相关的内容,然后与同伴进行交流讨论.
【说明】学生通过观察、分析,与同伴进行交流,找出变化的规律.
【归纳结论】许多图形的变化都具有规律性,用字母表示其变化规律更简单明了.在探究图形的变化规律时,往往要找出哪些量发生变化,哪些量不发生变化.
先独立完成下面的问题,然后再与同伴交流.
问题1(1)搭200个这样的正方形需要多少根火柴棒?
【说明】学生通过计算,初步体会用数值代替式子中的字母进行计算,就可以得到对应的式子的值.进一步感受从特殊到一般,从一般到特殊的数学思想方法.
实用初一数学整式教案范文(14篇)篇二
1.理解同底数幂的乘法法则.
2.运用同底数幂的乘法法则解决一些实际问题.
3.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.
【学习方法】自主探究与合作交流。
【学习重点】正确理解同底数幂的乘法法则.
【学习难点】正确理解和应用同底数幂的乘法法则.
实用初一数学整式教案范文(14篇)篇三
三、学习难点:理解运算法则及其探索过程。
(一)预习准备。
(2)思考:单项式与单项式相乘可细化为几个步骤?
(3)预习作业:
1.下列单项式各是几次单项式?它们的系数各是什么?
实用初一数学整式教案范文(14篇)篇四
教学目标:
1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;。
2.理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。
教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。
教学方法:探索讨论、归纳总结。
一、复习回顾。
活动内容:复习准备。
1.同底数幂的除法。
同底数幂相除,底数不变,指数相减。
2.单项式乘单项式法则。
单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
二、情境引入。
活动内容:由生活常识“先见闪电,后闻雷鸣”的例子引出课题。
三、探究新知。
活动内容:
1.直接出示问题,由学生独立探究。
你能计算下列各题吗?如果能,说说你的理由。
一、学习目标:1、熟练地掌握多项式除以单项式的法则,并能准确地进行运算.
2、理解整式除法运算的算理,发展有条理的思考及表达能力.
二、学习重点:多项式除以单项式的法则是本节的重点.
三、学习难点:整式除法运算的算理及综合运用。
实用初一数学整式教案范文(14篇)篇五
24.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
26.某单位在2013年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队员工的费用,其余员工八折优惠.
(1)若设参加旅游的员工共有m(m10)人,则甲旅行社的费用为元,
乙旅行社的费用为元;(用含m的代数式表示并化简)。
(2)假如这个单位组织包括带队员工在内的共20名员工到某地旅游,该单位选择哪一家旅行社比较优惠?说明理由.
(3)如果这个单位计划在2月份外出旅游七天,设最中间一天的日期为n,则这七天的日期之和为.(用含有n的代数式表示并化简)
假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)
实用初一数学整式教案范文(14篇)篇六
1.会进行简单的整式加、减运算.
2.能说明整式加、减中每一步运算的算理,逐步发展有条理的思考和表述的能力.
【重、难点】。
会进行简单的整式加、减运算.
【教学过程】。
一、情境创设。
1.操作:
(1)准备三张如下图所示的卡片。
(2)思考:
用它们拼成各种形状不同的四边形,并计算拼成的四边形的周长.
二、探索活动。
活动一:。
实用初一数学整式教案范文(14篇)篇七
单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
初一数学上册整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是"+"号,括号里的各项都不变号;若括号前边是"-"号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
实用初一数学整式教案范文(14篇)篇八
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点。
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间速度=路程/时间。
画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。
教科书第17页练习1、2。
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
教科书习题6.3.2,第1至5题。
实用初一数学整式教案范文(14篇)篇九
2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;。
3.通过具体的例子感受一些常用的相等关系式.
【对话探索设计】。
〖探索1〗。
(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.
解:设前年购买计算机x台,那么,。
设计(1)是让学生感受列代数式是列方程的基础.
去年购买的计算机的数量是________;。
今年购买的计算机的数量是________;。
根据关系:三年共购买计算机140台(关系式:前年购买量+去年购买量+今年购买量=140台),列得方程:。
____________________________.
合并得________________.
系数化为1得______________.
答:______________________.
归纳:总量等于各部分量的和是一个基本的相等关系.
〖探索2〗。
(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.
(2)把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.
解:设这个班级有x名学生,。
根据第一关系,这批书共_________________本;。
根据第二关系,这批书共_________________本;。
这批书的总数是个定值,表示它的两个不同的式子应该相等.
熟悉这些关系有助于列方程.
根据这一相等关系列得方程:。
________________________.
想一想,怎样解这个方程?
归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.
〖练习〗。
1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.
解:设第二块地(漫灌)用水x吨,。
第一块地(喷灌)用水________吨.
根据关系:两块地共用水300吨,可列方程:。
__________________________________.
解得___________.
答:___________________________.
〖作业〗。
p79.练习,p84.1,6。
〖补充作业〗。
1.按要求列出方程:。
(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.
2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.
根据去年的产量是950吨列方程:__________________.
解得___________.答_________________________.
实用初一数学整式教案范文(14篇)篇十
通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。
有序数对的概念及平面内确定点的方法
[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?
[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?
如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?
归纳8排6座、第3列,第2排共同点:用两个数表示位置。
约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。
介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。
可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。
引入课题有序数对
由上述问题直接引出概念
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
请思考:我们为什么要学习有序数对,有序数对都有哪些用途?
[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)
(1)请问(5,4)和(4,5)表示的是哪个同学的座位?
(2)游戏:教师说出一组数对相应的学生立即站起来。
(3)思考:(3,4)和(4,3)指的是不是同一位置?
[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)
小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)
解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)
知识点:有序数对
有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
注意点:(a,b)与(b,a)表示的是两个不同的位置。
主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。
小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。
自由设计 二选一
1、 在方格纸上设计一个用有序数对描述的图形。
2、设计一个游戏,如解密游戏、迷宫游戏等。
七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.
实用初一数学整式教案范文(14篇)篇十一
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
实用初一数学整式教案范文(14篇)篇十二
【教学目标】。
1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】。
一、本讲主要学习内容。
1、负数的意义及表示2、零的位置和地位。
3、有理数的分类4、数轴概念及三要素。
5、数轴上数与点的对应关系6、数轴上数的比较大小。
其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。
下面概述一下这六点的主要内容。
1、负数的意义及表示。
把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,-等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位。
零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
3、有理数的分类。
正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。
正整数。
整数零正有理数。
有理数负整数或有理数零。
分数正分数负有理数。
负分数。
实用初一数学整式教案范文(14篇)篇十三
运用有理数的运算律计算:
100×2+252×2=。
100×(-2)+252×(-2)=。
有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?
教学目标。
知识与技能。
1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项;。
2.能先合并同类项化简后求值;。
过程与方法。
1.经历类比整式的运算律,探究合并同类项法则,培养观察、探索、分类、归纳等能力;。
2.通过计算两个个长方体纸盒的用料情况,初步学会从实际问题入手,尝试从数学的角度提出问题、理解问题,并运用所学的.知识和技能解决问题,进一步发展应用意识.
教学目标。
情感态度与价值观。
掌握规范解题步骤,养成良好的学习习惯.
教学重难点。
重点。
1.掌握合并同类项法则,熟练地合并同类项;。
难点。
1.对同类项概念的理解,合并同类项法则的探究;。
2.利用整式的加减运算,解决简单的实际问题.
实用初一数学整式教案范文(14篇)篇十四
1。单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2。单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3。多项式:几个单项式的和叫多项式。
4。多项式的项数与次数:多项式中所含单项式的`个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
5。整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
6。同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
7。合并同类项法则:系数相加,字母与字母的指数不变。
8。去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是—号,括号里的各项都要变号。
9。整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
10。多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。