初一教案内容的编写应当贴近学生的日常生活和现实情境,以激发学生的学习兴趣和动力。请大家认真阅读以下初一教案范文,思考教师如何布置课堂任务和组织学生参与教学的方式。
优秀初一数学整式教案(通用16篇)篇一
24.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米,每千米2.4元。
(1)若某人乘坐了()千米的路程,则他应支付的费用是多少?
(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?
26.某单位在2013年春节准备组织部分员工到某地旅游,现在联系了甲乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠措施:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队员工的费用,其余员工八折优惠.
(1)若设参加旅游的员工共有m(m10)人,则甲旅行社的费用为元,
乙旅行社的费用为元;(用含m的代数式表示并化简)。
(2)假如这个单位组织包括带队员工在内的共20名员工到某地旅游,该单位选择哪一家旅行社比较优惠?说明理由.
(3)如果这个单位计划在2月份外出旅游七天,设最中间一天的日期为n,则这七天的日期之和为.(用含有n的代数式表示并化简)
假如这七天的日期之和为63的倍数,则他们可能于2月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程)
优秀初一数学整式教案(通用16篇)篇二
1.理解同底数幂的乘法法则.
2.运用同底数幂的乘法法则解决一些实际问题.
3.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.
【学习方法】自主探究与合作交流。
【学习重点】正确理解同底数幂的乘法法则.
【学习难点】正确理解和应用同底数幂的乘法法则.
优秀初一数学整式教案(通用16篇)篇三
学习目标:1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2.了解单项式、多项式、整式产生的背景,理解单项式、多项式的相关概念。
4.进一步培养学生认识特殊与一般的辩证关系。
学习重点:单项式、多项式、整式概念的理解。
学习难点:单项式的系数、次数;多项式的项数、次数等概念。
一、自主预习:
预习内容:
预习检测:。
1.如图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a,b,c。这个箱子露在外面的表面积是;它项式,它的次数是。
2.下面两组式子各有什么特点?
我的疑惑:
二、合作探究:
优秀初一数学整式教案(通用16篇)篇四
1.经历探索规律并用代数式表示规律的过程,能用代数式表示以前学过的运算律和计算公式.
2.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识,体会数形结合的思想方法.
【学习重点】。
能用代数式表示以前学过的运算律和计算公式,会用字母表示数.
【学习难点】。
体会字母表示数的意义,形成初步的符号感,提高应用数学的意识.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
情景导入生成问题。
【说明】以学生喜欢的游戏的方式引入,让学生感受数学的奥妙,激发学生的求知欲.
自学互研生成能力。
先认真阅读教材第78页最上方的图3-1及与图相关的内容,然后与同伴进行交流讨论.
【说明】学生通过观察、分析,与同伴进行交流,找出变化的规律.
【归纳结论】许多图形的变化都具有规律性,用字母表示其变化规律更简单明了.在探究图形的变化规律时,往往要找出哪些量发生变化,哪些量不发生变化.
先独立完成下面的问题,然后再与同伴交流.
问题1(1)搭200个这样的正方形需要多少根火柴棒?
【说明】学生通过计算,初步体会用数值代替式子中的字母进行计算,就可以得到对应的式子的值.进一步感受从特殊到一般,从一般到特殊的数学思想方法.
优秀初一数学整式教案(通用16篇)篇五
三、学习难点:理解运算法则及其探索过程。
(一)预习准备。
(2)思考:单项式与单项式相乘可细化为几个步骤?
(3)预习作业:
1.下列单项式各是几次单项式?它们的系数各是什么?
优秀初一数学整式教案(通用16篇)篇六
教学目标:
1.经历探索整式除法运算法则的过程,会进行简单的整式除法运算;。
2.理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。
教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。
教学方法:探索讨论、归纳总结。
一、复习回顾。
活动内容:复习准备。
1.同底数幂的除法。
同底数幂相除,底数不变,指数相减。
2.单项式乘单项式法则。
单项式与单项式相乘,把它们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
二、情境引入。
活动内容:由生活常识“先见闪电,后闻雷鸣”的例子引出课题。
三、探究新知。
活动内容:
1.直接出示问题,由学生独立探究。
你能计算下列各题吗?如果能,说说你的理由。
一、学习目标:1、熟练地掌握多项式除以单项式的法则,并能准确地进行运算.
2、理解整式除法运算的算理,发展有条理的思考及表达能力.
二、学习重点:多项式除以单项式的法则是本节的重点.
三、学习难点:整式除法运算的算理及综合运用。
优秀初一数学整式教案(通用16篇)篇七
1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。
2.能用适当的图形和语言表示自己的思考结果。
本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。
引导活动讨论
引导:意在教师讲解七巧板的历史,七巧板制作的方法。
活动:人人参与制作七巧板,拼摆七巧板的图案。
讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。
启发式教学
先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。
利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。
(1) 你的拼图用了什么形状的板?你想表现什么?
(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。
(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。
通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。
介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。
由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。
通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。
利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。
(一)知识回顾 (三)例题解析 (五)课堂小结
(二)观察发现 (四)课堂练习 练习设计
优秀初一数学整式教案(通用16篇)篇八
单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和.
多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里 是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包包括它前面的性质符号.
它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(0)无关。
合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
1、如果遇到括号按去括号法则先去括号. 2、结合同类项. 3、合并同类项
2.3整式的乘法法则 :
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
2.4整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
希望这篇初一上册数学期中重点知识点指导,可以帮助更好的迎接新学期的到来!
优秀初一数学整式教案(通用16篇)篇九
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容――数轴.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可.
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
优秀初一数学整式教案(通用16篇)篇十
回顾这节课的大致过程,回顾知识结构图;以练习的形式,对本章的每一个知识点进行练习,巩固提高,在掌握双基的基础上,进行提高训练,拓展训练,为基础比较好的同学在全面掌握的基础上,进行拓展,激发数学学习的激情。老师进行个别辅导和批改,并搜集同学们的易错点、混淆和不懂地方。
这节课基本上展示了学生复习知识的过程,在这一过程中,让学生体验了如何由具体到抽象再到具体。整个教学过程中师生是朋友,是合作者;学生以自主探究、合作交流为主要学习方式,创造一种宽松、平等、快乐的课堂教学氛围,这节课和谐融洽。
不足及改进。
反思一:练习讲评当讲则讲,不要平均用力。我个人认为,在批改过程中,发现有一半同学对某题不会的,老师就应该集体讲评,而出现的问题是个别现象的,就个别辅导,即个别问题单独讲,共性问题大家讲。
反思二:相信学生并为学生提供充分展示自己的机会。
课堂上给学生独立思考的时间,然后通过学生讲解、合作学习、学生板书与学生互相点评等多种形式,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题、解决问题的独到见解,以及思维的误区,以便指导今后的教学。课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。课内集中讲评学生试题。在老师对练习集体讲评的环节中,有一个共同的现象:老师讲老师的,学生做学生(有的学生只顾低头做,不听老师讲解),一但老师讲完了,这些同学中仍有些不懂的,错过听讲的机会。结果是会的就会,不会的还是不会,还有部分同学只顾抄答案。
反思三:以后各章的知识点归纳梳理还会坚持让学生自己做,老师不要代替包办,但学生要听从老师的指导和建议,让学习有针对性的去小结归纳。
文档为doc格式。
优秀初一数学整式教案(通用16篇)篇十一
2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;。
3.通过具体的例子感受一些常用的相等关系式.
【对话探索设计】。
〖探索1〗。
(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.
解:设前年购买计算机x台,那么,。
设计(1)是让学生感受列代数式是列方程的基础.
去年购买的计算机的数量是________;。
今年购买的计算机的数量是________;。
根据关系:三年共购买计算机140台(关系式:前年购买量+去年购买量+今年购买量=140台),列得方程:。
____________________________.
合并得________________.
系数化为1得______________.
答:______________________.
归纳:总量等于各部分量的和是一个基本的相等关系.
〖探索2〗。
(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.
(2)把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.
解:设这个班级有x名学生,。
根据第一关系,这批书共_________________本;。
根据第二关系,这批书共_________________本;。
这批书的总数是个定值,表示它的两个不同的式子应该相等.
熟悉这些关系有助于列方程.
根据这一相等关系列得方程:。
________________________.
想一想,怎样解这个方程?
归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.
〖练习〗。
1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.
解:设第二块地(漫灌)用水x吨,。
第一块地(喷灌)用水________吨.
根据关系:两块地共用水300吨,可列方程:。
__________________________________.
解得___________.
答:___________________________.
〖作业〗。
p79.练习,p84.1,6。
〖补充作业〗。
1.按要求列出方程:。
(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.
2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.
根据去年的产量是950吨列方程:__________________.
解得___________.答_________________________.
优秀初一数学整式教案(通用16篇)篇十二
1。单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2。单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3。多项式:几个单项式的和叫多项式。
4。多项式的项数与次数:多项式中所含单项式的`个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
5。整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
6。同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
7。合并同类项法则:系数相加,字母与字母的指数不变。
8。去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是—号,括号里的各项都要变号。
9。整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
10。多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
优秀初一数学整式教案(通用16篇)篇十三
单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
初一数学上册整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
整式分类为:.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是"+"号,括号里的各项都不变号;若括号前边是"-"号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
优秀初一数学整式教案(通用16篇)篇十四
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的'次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
b)指数是1时,不要误以为没有指数;
d)当三个或三个以上同底数幂相乘时,法则可推广为
(其中m、n、p均为整数);
e)公式还可以逆用:
(m、n均为整数)
a)幂的乘方法则:
(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
b)
(m,n都为整数)。
d)底数有时形式不同,但可以化成相同。
e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。
g)幂的乘方与积乘方法则均可逆向运用。
优秀初一数学整式教案(通用16篇)篇十五
教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。
教学重点:对概念的理解及对数据收集整理。
教学难点:总体概念的理解和随机抽样的合理性。
教学过程:
一、情景创设,引入新课。
二、新课。
1.抽样调查的意义。
在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。
抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。
2.总体、个体、样本、样本容量的意义。
总体:所要考察对象的全体。
个体:总体的每一个考察对象叫个体。
样本:抽取的部分个体叫做一个样本。
样本容量:样本中个体的数目。
3.抽样的注意事项。
下面是某同学抽取样本数量为100的调查节目统计表:
表中的数据信息也可以用条形统计图或扇形统计图来描述。
优秀初一数学整式教案(通用16篇)篇十六
2.初步培养学生观察、分析和抽象思维的能力。
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
一、从学生原有的认知结构提出问题。
1.庇么数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x—3)。
(3)乙数比x的倒数小7;(—7)。
(4)乙数比x大16%((1+16%)x)。
(应用引导的方法启发学生解答本题)。
二、讲授新课。
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。
解:设甲数为x,则乙数的代数式为。
(1)x+5(2)2x—3;(3)—7;(4)(1+16%)x。
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x。
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积。
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。
解:设甲数为a,乙数为b,则。
(1)2(a+b);(2)a—b;(3)a2+b2;
(4)(a+b)(a—b);(5)(a+b)(b—a)或(b+a)(b—a)。
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数。
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2。
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的.;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。
分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a—1);(3)(5a+7);(4)a2+a。
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:(1)m(m+6)个;(2)(m)m个。
三、课堂练习。
1鄙杓资为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。
2庇么数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。
3庇么数式表示:
(1)与a—1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。
〔(1)25—(a—1);(2);(3)2x2+2;(4)y(y+3)薄。
四、师生共同小结。
首先,请学生回答:
1痹跹列代数式?2绷写数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业。
1庇么数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2币阎一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积。
学法探究。
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律。
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)。