阅读优秀的范文可以提高写作水平,所以我们需要收集一些范本。以下是小编为大家整理收集的一些总结佳作,希望能够给大家提供一些参考和借鉴。
热门数学建模论文(通用17篇)篇一
大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专业技能的新型高职人才。
近年来,随着国内产业结构的不断调整,对于高等职业技术人才需求不断增大,社会对高等职业技术教育寄予厚望。但是传统的高职教育由于专业设置不合理,使用教材落后,实训实践场地不足,培养出的学生动手能力差、专业能力不足,面对社会发展的新形势,高职教育必须进行教学改革,提高学生的职业能力和就业竞争力。高职教育不同于普通本科教育,它有以下几方面的特点。
1人才培养目标不同。
高职教育和本科教育人才培养目标不同,高职教育是以技术应用型高技能人才为培养目标,所有的教学课程设计和人才培养体系设计都是基于此目标展开的,高职教育主要是为了向产业发展提供生产、服务、管理等一线工作的高级技术应用型人才,专业能力培养和目标职业匹配度高,所以高职教育教学成果最直接的评价就是毕业生的就业竞争力和上岗后的适应能力。
2两者的教学内容不同。
高职教育的教学重点是学生要掌握与实践工作关系较为密切的业务处理能力、动手能力与交流能力,把学生的职业能力建设列为教学重点,课程设计专业性强,一旦就业能为企业创造明显的效益,高职教育各专业课程差别较大。
3生源情况不同。
在当前的教育教学体系下,高职教育的生源普遍较差,大多是没有希望考上大学,转而进入高职学习,希望通过掌握一定的技术来实现就业,所以高职学生的基础知识普遍较差,学习兴趣不高。数学建模给高职数学教学改革开辟了新思路,数学建模为数学理论学习和工程实践应用搭建了桥梁,在工学结合的基本原则下,采取数学建模教学理念,培养学生的数学素养及动手应用能力是一个非常有效的手段[3]。
1数学建模的概念数学建模是将数学理论和现实问题相结合的一门科学,它将实际问题抽象、归纳成为相应的数学模型,在此基础上应用数学概念、数学定理、数学方法等手段研究处理实际问题,从定性或者定理的角度给出科学的结果[4]。数学建模的发展为数学知识的应用提供了途径,对于现实中的特点问题,可以用数学语言来描述其内在规律和问题,运用数学研究的成果,结合计算机专业软件,通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,转化成为数学问题,借助数学思想建立起数学模型,从而解决实际问题。2基于数学建模思想的教学理念基于数学建模的这种学科特点,可以把数学知识应用化,因此,基于数学建模思想的教学理念可以概括为三个层次:首先,确立提高学生数学应用能力为目标,以提高学生数学学习兴趣为手段,以学习数学建模为途径;其次,结合教学内容,开发相应的数学建模案例,因地制宜、因生制宜,根据专业不同编写相应的校本教材;最后,改进教学方法,创新课堂教学模式,建立课外数学建模学习兴趣小组,带领学生进行数学应用实践活动,鼓励学生参加各种数学建模竞赛[5]。
传统的数学教学模式以教师课堂讲授为中心,学生只能被动的接受,由于学生的基础知识水平不同,掌握新知识的能力也不同,这种没有区分的教学模式教学效果差,往往带来的结果是造成基础差的学生跟不上,对数学感兴趣的学生失去兴趣。基于数学建模理念的高职数学教学改革,是以学生数学应用能力提高为目标,以数学学习兴趣培养为出发点,以数学建模为途径,以教学方式改革为保障,打造高职数学教学改革新模式,全面提高高职教育应用型人才培养水平。
1结合专业特色,突出数学教育的应用性。
数学作为高职教育的基础性学科,理论性强,体系性强,对于基础知识薄弱、学习兴趣差的高职生来说感觉难学、枯燥,这是因为高职数学教育没有教会学生如何在专业学习中和以后的工作中如何去用学到的数学知识,学生感觉知识无用自然也就不会主动去学,之所以引入数学建模的思想就是为了让学生利用学到的数学知识去解决实际问题,让学生认识到数学不只是纸面上的写写算算,数学可以把实际问题抽象化,变成数学问题,利用数学的研究方法给实际问题进行科学的指导,这样高职数学教育就不再是课堂上的照本宣科,课下的演算作业,将基础数学教育和学生的专业教育相结合,带来学生用数学解决专业问题是大幅度提高学生专业能力的有效途径。
2结合学生能力,因材施教、因地制宜。
高职学校的生源不如普通高校,一般学习基础较差,对于专业实训课并不明显,但是在基础学科教学过程特别突出,很多基础知识掌握不牢,甚至一点印象都没有,教师在上课时要充分考虑到这种情况,在课堂授课时给予实时的补充,以助于知识的过渡。因材施教是我国传统的教育思想,在掌握学生知识水平的基础上,教师要根据不同学习层次学生的具体情况,安排教学内容和设置教学目标,对于基础知识水平不高、学习兴趣较差、学习能力较弱的学生要进行课外辅导。高职基础课教育是专业课学习的基础,授课教师要根据学生的专业学习情况和专业特点,把迁移知识运用能力在课堂上结合学生的专业背景进行辅导,高职数学教育不仅仅是为了学习数学,更多的是发挥数学知识在其专业能力培养中的作用。
3培养学生学习兴趣,促进整体教学质量提高。
高职学校的学生学习兴趣普遍不高,尤其是对于学了十几年都感觉头痛的数学,要想提高数学的教学质量,首先必须要培养学生的学习兴趣,长期以来学生在数学学习上已经有了根深蒂固的认识,培养数学学习兴趣很难,但是如果学生没有学习兴趣,教师授课内容、授课方式改革都起不了太大的作用,学生对于数学学习兴趣低由于低年级学习时受到的挫败感,因此要让学生建立学习数学的自信心,让他们体验学会数学的成就感,这样才能逐步培养他们的学习兴趣。教师可以采取以点带面的方式,先选择有一定基础的学生,再从全部课程学习中发现表现优秀的个体,组织参加建模竞赛,进行单独赛前加强指导,用这些榜样的力量提高全体同学的学习积极性。数学建模作为提高高职数学教育教学水平的“点”,能够以其趣味性强,带动学生的学习兴趣,促进高职数学教育教学水平的全面提高。
4改革教学及评价方式,建立面向应用的数学教育体系。
由于基于数学建模思想的高职数学教学改革打破了以往的课堂教学方式和考核方式,学生面对的不再是期末的一张试卷,而是一个个数学建模案例,需要学生运用本学期学到的数学知识解决实际问题,教师根据学生对案例的理解程度,数学模型运用能力,实际过程分析和解题技巧等多方面给出评价,同时积极评价、鼓励学生的创新思维,并将其纳入到考核体系当中。通过以上各个方面评价的加权作为最后的评价指标。这种以数学知识应用为基础,直接面向应用的高职数学教育模式能极大的激发学生的学习积极性和知识应用能力,符合高职应用型人才培养理念,对提高高职学生的专业能力也打下了坚实的基础。基于数学建模理念的高职数学教学改革是推动高职应用型人才培养体系建设的新举措,也是推动高职基础课教学水平的重要内容,能有效解决学生学习兴趣低,基础知识掌握不牢,数学知识应用能力低等问题,通过“案例驱动法+讨论法”,引导学生再次对课本知识进行思考和应用,有利于培养学生的创新思维和应用能力。引入数学建模理念教学,把课堂学习的主动权交回给学生,既保证了高等数学原有的知识体系的完整,也可以提高教学效率。通过教学方式和评价方式改革,学生的学习主动性增强,也改变了以往对于数学学习的学习态度。高等数学作为高职教育学生必修的基础课,在培养学生基本数学素养上具有重要作用,是理工类专业课程体系的重要组成部分,基于数学建模理念的高职数学教学改革也为同类基础理论课改革提供了新思路和范例。
[1]孙丽.在高职数学教学改革中应注重数学建模思想的渗透[j].科技资讯,20xx(22):188.
热门数学建模论文(通用17篇)篇二
摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。
引言。
随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。
数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。
如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。
2.1计算机软件中数学建模思想的应用。
通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。
经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。
从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。
3.1分析问题。
数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。
在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。
在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。
4结语。
通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。
热门数学建模论文(通用17篇)篇三
运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.
热门数学建模论文(通用17篇)篇四
在高等教育事业改革不断深化的背景下,为了提升教育教学质量,新时期对大学数学教学提出了更高的要求。大学数学作为课堂教学的主体,教师在传授知识的同时,要注重学生学习能力和解决问题能力的培养。
数学知识来源于生活,应用于生活,如微积分作为高等数学知识中的典型代表,在各个行业中具有不可或缺的作用。为此,任课教师在大学数学教学中培养学生发现问题、分析问题和解决问题的能力十分重要,在传授知识的过程中帮助学生利用所学知识来解决实际问题。一般情况下,教师着重介绍相关数学概念和原理,推导常用公式,促使学生能够记住公式,学会公式的应用过程,逐渐掌握解题技巧。
因此,如何能够在传授知识的同时,促使学生掌握数学学习方法,将所学知识应用到实践中来解决数学问题是一个首要问题。从大量教学实践中可以了解到,在大学数学教学中渗透数学建模思想十分重要,有助于激发学生的学习兴趣,促使学生积极投入其中,切实提升学生的数学专业水平。
在大学数学教学中渗透数学建模思想,应该结合实际情况,深入挖掘数学知识。在教学中,教师应该充分发挥自身引导作用,联系学生数学知识实际学习情况,有针对性地整合数学知识,了解相关数学内容,这样不仅可以丰富教学内容,还可以为课堂教学注入新的活力,有效激发学生的学习兴趣,提升学习成效。具体表现在以下方面:
(一)闭区间连续函数的性质。
闭区间连续函数的性质内容是大学数学教学中的重要组成部分,由于知识理论性较强,知识较为抽象,学习难度较大,在讲解完相关理论知识后,可以引入椅子的稳定问题,创建数学模型,提问学生如何在不平稳的地面上平稳地放置椅子。学生可以了解到这一问题同所学知识相关联,闭区间连续函数的性质可以解决这一问题。学生整合所学知识,通过对问题的分析,可以了解到利用介值定理來解决问题。通过建立数学模型,学生更加充分地掌握了闭区间连续函数的`性质,提升了学习成效,为后续知识学习打下了坚实的基础。
(二)定积分。
定积分是高等数学教学中的重要组成部分,在解决几何问题时均有所应用,并且被广泛应用在实际生活中。如,在一道全国大学生数学建模竞赛题目中,计算煤矸石的堆积,煤矿采煤时所产生的煤矸石,为了处理煤矸石就需要征用土地来堆放煤矸石,根据上级主管部门的年产量计划和经费如何堆放煤矸石?题目中的关键点在于堆放煤矸石的征地费用和电费的计算。征地费计算难度较小,但是煤矸石堆积的电费计算难度较高,但此项内容涉及定积分中的变力做功知识点。学生掌握这些内容后就可以建立数学模型,更加高效地了解如何根据预期开采量来堆放煤矸石。通过数学模型,学生也可以了解到定积分内容同实际生活之间的联系,学习积极性就会大大提升。
(三)最值问题。
在高等数学中,最值问题占比比较大,同时在实际生活中应用较为普遍,导数知识可以解决实际生活中的最值问题,这就需要提高对导数知识实际应用的重视程度。教师在为学生讲解完导数的相关概念知识后,通过建立关于天空的采空模型,提问学生为什么雨后太阳出来了,雨滴还在空中,那么将为人们呈现出什么样的景色?学生回答彩虹。继续提问彩虹为什么有颜色,是什么决定了天空中彩虹的高度?对此,学生的兴趣较为浓厚,可以分为若干个小组进行讨论。通过分析可以得出,雨滴可以反射太阳光,形成彩虹。结合光线的反射和折射定律,借助所学的导数知识来计算得出太阳光偏转角度的最值,有效解决实际学习的问题,加深对知识的理解和记忆,提升数学知识学习成效。
(四)微分方程。
微分方程知识同实际生活之间息息相关,建立微分方程可以有效解决实际生活中的问题。这就需要学生在了解微分方程知识的基础上,进一步建立数学模型来解决问题。如,在当前社会进步和发展下,人均物质生活水平显著提升,肥胖成为危害人们身体健康的主要问题之一,受到社会各界广泛的关注和重视。通过问题精简化和假设,可以得到微分方程模型,在分析方程中饮食控制和运动锻炼两个关键要素后,有助于避免人们走入减肥误区,帮助他们树立正确的减肥理念。
(五)矩阵。
在高等数学教学中,矩阵的概念较为抽象和复杂,在讲解问题之前,应该根据知识点来创设教学情境,辅助教学活动。通过引入企业工厂生产总成本模型,充分描述工厂生产中需要的原材料和劳动力,并且详细记录管理费用。这有助于加深人们对矩阵概念的认知和理解,提升学习成效,同时帮助学生深入理解和记忆,锻炼学生的数学解题思维,加深概念理解和记忆,掌握解题技巧和方法,从而提升学生的数学建模意识。
综上所述,在大学数学教学中,可以通过数学建模思想来引导学生养成良好的自主学习能力,发挥自身的主体能动性和创新能力,提升学生解决问题的能力,将所学知识灵活运用到实际生活中,养成良好的数学素养。
热门数学建模论文(通用17篇)篇五
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从初中数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高初中数学课堂效率及课堂质量的有效手段。初中数学是初中学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,初中数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于初中数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让初中数学教学质量也得到大幅度的提升。初中数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的.将数学建模运用在初中数学教学过程中,是每个初中数学教师都值得思考的问题。
数学建模是为了解决数学中遇到的问题,数学本身特别是初中数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题。
对于初中生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据初中生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例。
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到初中数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模。
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于初中数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
热门数学建模论文(通用17篇)篇六
摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。
经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。
数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。
二、经济问题数学模型的建立。
经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。
三、建模举例。
四、结语。
综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。
热门数学建模论文(通用17篇)篇七
使学生的综合应用能力、实践创新能力和综合应用素质等多方面均能得到提升和发展。
对于医学专业的学生来说,在校所学的数学基础理论课程比较有限,并且学生对纯粹的数学知识与复杂的理论推导已经极为厌倦,如果数学建模还是以传统的“灌输式”和教师“主导型”为主、简单的应用案例为主要教学内容的话,其结果势必会使学生有一种再讲数学课和做应用题的感觉,既不能很好地激发学生的学习兴趣,也不能体现数学建模的思想方法和本质特色。
因此,如何使学生摆脱这种尴尬的现状已成为我们教学的一大难点。针对这种情况,在教学模式上,我们大胆尝试研究型教学模式,即采用“从实践中来,到实践中去”的教学理念。一方面,从最现实、最热门的医学话题出发,从学生最感兴趣的.问题入手,激发学生的学习兴趣和进一步学习的主动性,使他们从一开始就能进入到学习的角色中去;另一方面,通过开展多种方式的实践教学活动,使学生在实践中掌握数学建模的常用方法和基本技能,忽略繁琐的数学推导过程,让学生体会发现问题和思考问题的过程,培养学生解决问题的创新能力。
近些年来,我们开设的医药数学建模课受到了学生的一致好评,其关键之处在于我们一改传统的教学模式,通过组织数学建模兴趣研讨班,让每位同学都能充分地参与到研究中去并且使每位学生都有发言的机会。这些举措旨在进一步激发学生的创新意识,提高学生的数学建模实践能力。研讨班面向全校各类医学专业的学生,并以三人为单位,划分成若干个组,通过专题研讨的形式开展活动。实践证明:通过这种研讨过程,学生不仅对所学的医学知识有了更深刻的理解与认识,在文献资料查阅、计算机编程、语言表达能力等诸多方面也都有了显著的提高。通过这个过程的学习,为学生今后从事医学科研工作打下了良好的基础。
为了有效的培养学生综合应用能力和深层次学习的习惯与意识,我们在教学方法上一改往日的“讲透,讲懂”的方法,忽略纯理论的繁琐推导,突出知识的应用思想和应用意识,让学生带着问题上课,尝试在解决问题中与教师进行交流,下课带着问题回去。
在课堂教学中,重点讲解发现问题和解决问题的方法与技巧。通过课前作业,引导学生自我发现问题;通过课堂讲解和研讨,引导学生解决问题;通过课后作业,总结和巩固所学知识,学习应用与拓展知识。这种完全以学生为主,教师为辅的做法,有利于培养学生树立勇于探索求知的信心和探索新知识的能力与意识,提高学生的创新能力和敏锐的洞察力及想象力,从而提升学生的综合应用素质。
在现实生活中的实际问题是比较复杂的,往往单一的方法是难以解决的,通常是需要多种方法的综合应用方能解决。
因此,以实际问题驱动的教学模式,主要是引导学生如何将复杂的实际问题分解为一系列简单的小问题,在解决每一个小问题的过程中,让学生学习并掌握相关的数学知识与方法。这种在应用中学习的教学方法,在很大程度上解决了学生普遍存在的“学数学有什么用、学了数学不知怎么用”的困惑。
在整个教学过程中,贯穿以学生为主体,通过案例分析引导学生的思维方法,针对一个案例的解决过程和方法,要求实现举一反三,促使学生对所掌握的知识进行重组再现和优化构建,让学生在学习和问题的解决中学会不断地总结与归纳,用成功的方法再去演绎解决新的问题,通过不断地归纳演绎、对比分析、总结经验、弥补不足,进一步学习相关知识和方法,再进行实践,从而不断增强自身的综合应用能力和素质。
随着医学院校教育理念的转变以及教育体制改革的深入,对培养适应科学技术迅速发展的创新型医学人才提出了更高的要求。如何培养出具有创新能力、综合素质高的专业人才已成为亟待解决的问题之一。本文探讨了医药数学建模课程的开设对培养大学生实践创新能力的几点做法。教学实践证明:数学建模课充分锻炼了学生的各项能力,是提高医学专业学生综合应用素质行之有效的方法。
热门数学建模论文(通用17篇)篇八
(请先阅读“全国大学生数学建模竞赛论文格式规范”)。
a题城市表层土壤重金属污染分析。
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、??、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10厘米深度)进行取样、编号,并用gps记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1)给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2)通过数据分析,说明重金属污染的主要原因。
(3)分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
热门数学建模论文(通用17篇)篇九
培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。随着科学技术的不断发展,各学科各领域对实际问题的研究日益精确化与定量化,数学在科学研究与工程技术中的作用不断增强,其应用的范围几乎覆盖了所有学科分支,渗透到社会生活中的各个领域。前苏联数学家亚历山大洛夫曾说过,“数学在其它科学中,在技术中,在全部生活实践中都有广泛的应用”。1993年,王梓坤院士发表的著名报告《今日数学及其应用》中也深刻指出:“现代世界国家间的竞争本质上是高技术的竞争,而高技术本质上是一种数学技术。”数学是一门技术已经成为人们的共识。数学技术离不开数学建模,数学建模是把数学作为工具,并应用它解决实际问题的一种活动,它是一个跨学科、跨专业、综合性和应用性都非常强的过程,是数学应用的必由之路,是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介。因此,数学建模的过程是一个全而培养学生综合素质、提高学生各种能力的过程,数学建模是培养生产一线应用型人才的一条重要途径。
应用型人才是将专业知识和专业技能应用于社会实践的专门人才是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专门人才社会对应用型人才的基本要求是具有基础扎实,知识而宽,应用能力强,素质高,有较强的创新精神和团队合作精神。他们的突出特点是既具有宽广的知识而和深厚的基础理论,又能将所学知识应用于本行业相关技术领域,适应产业发展对应用型人才市场需求的不断变化,还有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力。
随着高等教育的不断扩招,高等教育的大众化趋势已越来越明显,在这种背景下,传统的“研究型”、“学术型”人才培养模式受到了严峻的挑战,因此,一些发达国家率先提出了“发展应用型大学”,“培养应用型人才”的口号。德国早在20世纪70年代就成立了应用科技大学,其应用型人才的培养特色鲜明,深受欢迎。美国的工程教育,英国的技术学院,日本的短期大学都以培养应用型人才而著称。近年来,我国高等院校对应用型人才的培养取得了一定的进展,但仍然存在认识上的不足,培养方案和措施仍有许多不尽如人意的地方,应用型人才的培养模式还有待于进一步探索。通过多年的实践和探索,根据应用型人才的特点和社会日益数字化,对应用型人才的要求以及数学在各行各业中的广泛应用、数学建模在应用型人才培养中具有不可替代的重要作用。
数学建模就是用数学语言、方法近似地刻画要解决的实际问题,对于已建立的模型采用推理、证明、数值计算等技术手段及相应的数学软件求解,并利用所得的结果拟合实际问题。数学建模在应用型人才培养中的作用主要体现在以下几个方面:
由于实际问题的'复杂性,在数学建模过程中要涉及到大量的数据收集和对数据的分析与处理,一个完整的建模过程一般要经历模型的假设、模型的建立与求解、算法的设计和计算机实现、对结果的分析与检验并将所得的结果模拟实际问题等几个阶段。这些过程只靠个人的力量在有限时间内是很难完成的,这就注定了数学建模是一个团队的集体行为,需要有师生之间、学生之间以及学生与社会之间的交流与合作。因此数学建模有利于提高学生的团队合作精神,而团队合作精神又是社会对应用型人才的基本要求。
数学建模所面临的数据是杂乱无章的,这就要求学生对这些数据进行去粗取精,去伪存真,归纳、提炼、整理、加工和总结,还需要对一些已知条件进行符号化和量化,然后从中抽象出恰当的数学关系,从而组建一定的数学模型,再用所学的数学理论和方法去求解数学模型。在对实际问题中的数据进行加工和整理过程中,为使问题简化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并没有一定的范式,这要根据建模者对实际问题的理解、研究问题的目的以及数学背景来完成这个过程,应该说这是一个创造性的过程。另外,数学模型是对实际问题的近似刻画,为了使建立的数学模型尽可能完美地表达实际问题,又使模型易于求解,需要对模型进行不断的改进和不断的完善,这就要求学生不断对问题进行深入的了解,深入到知识的更深层面,这样又会产生新的疑问,这个过程多次循环们复,学生的创新能力将不断得到加强。创新能力也是社会对应用型人才的基本要求。
一个完整的数学建模过程是综合运用知识和能力,解决实际问题的过程。这不仅需要学生有较好的数学基础和严密的逻辑推理能力,还要求学生对问题的实际背景有一定的了解,要求学生有广博的知识和深厚的专业基础,并能对这些知识进行融会贯通。数学建模面临的数据}i-.}i是庞大而复杂的,对数据的处理过程是一个分析与综合,抽象与概括,比较与类比,系统化与具体化的过程。在这个过程中,学生的应变能力和多角度分析,多方位思考能力不断得到提高,综合素质不断得到加强。综合素质和能力是应用型人才的基本特征和社会对应用型人才的起码要求。
从实际问题中抽象出来的数学模型一般很复杂,因此模型的求解一般很困难,甚至无法求出模型的解析解,即使能求出模型的解析解,由于其复杂性而无多大的应用价值。所以数学模型的求解通常需要编写算法,运用某些数学软件利用计算机求其数值解,这就要求学生有较强的数学软件应用能力和对计算机的实际操作能力。在操作的过程中,学生的动手能力和实践能力自然而然得到提高。另外在数学建模中,需要进行调查研究,需要对有关的数据进行广泛的采集和补充,这就是应用型人才培养中所强调的实践性。
数学建模本身就是综合运用知识,解决实际问题的过程。数学建模中的很多典型案例,如“最优捕鱼策略”,“投资的收入和风险”,“车灯线光源的优化设计”等就较好地突现了知识的应用性。数学建模是数学应用的必由之路,是联系数学与实际问题的桥梁。一方面数学建模需要用数学语言、方法近似地刻画要解决的实际问题,另一方面数学建模需要利用所得的结果拟合实际问题,所有这些都与应用型人才的突出特点和社会对应用型人才的要求是一致的。
数学建模需要学生亲自参与问题的研究与探索,数据的收集和补充需要学生的积极参与,数据的处理和模型的建立需要学生的主动参与,模型的求解需要学生独立完成。数学建模一般需要综合运用多方面的知识,需要了解相关问题的背景材料,需要对相关的数据进行合理的取舍和有效的筛选,有些知识和相关的资料需要学生自己去查询,所有这些都为学生的自主学习提供了一个良好的“下台。另外,数学建模需要用自己的语言描述问题的解决过程,需要广泛的交流与合作,还需要进行论文的写作等等,这些都对学生语言表达能力的提高具有重要的作用。应用型人才的一个突出特点就是具有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力,而自学能力和语言表达能力为进一步获取新知识等能力提供了良好的基础。
应该说,数学建模的作用是多方面的,通过数学建模的训练,学生获得了参与研究探索的体验,培养了收集、分析和利用信息的能力,学会了分享与合作,锻炼了学生的意志力、洞察力、想象力、自学能力、语言的翻译和表达能力以及综合应用专业知识解决实际问题的能力与分析问题、解决问题的能力,所有这一切都是应用型人才培养所要达到的目标,也是与应用型人才培养模式的四个基本点是一致的。因此数学建模能将应用型人才的突出特征和社会对应用型人才的要求体现得淋漓尽致,它在应用型人才的培养中具有不可替代的重要作用。
1.马克思有一句名言,“一门科学只有成功地应用了数学时,才算真正达到了完善的地步”。不论是自然科学还是社会科学都需要数学,都蕴含数学。一门科学要成功地应用数学,必须对这门学科中的问题建立数学模型。因此,建议高等院校的各个专业都要不同程度地开设数学建模课程,并根据专业的不同要求选择合适的数学建模内容,真正做到“人人学有用的数学,人人做有用的数学,人人用有用的数学”。
2.数学建模课程应增加实训内容,数学建模的学习应以实训内容为主。教师应根据学生的具体情况,女排布置具有综合性、开放性、灵活性和趣味性的实训题目,让学生自己进行调查研究,自己收集数据、分析数据和处理数据,模型的建立和求解要以学生为主体,并以论文的形式提交给教师,教师提供实时指导和帮助,对建模的结果进行有的放矢的点评,并将实训内容作为学生期末考评的主要内容和重要依据。
3.举办多种形式的数学建模竞赛,丰富数学建模的教学内容和教学方式,引进案例教学和专题讲座,通过对典型案例的深入剖析,激发学生的学习兴趣和积极性,培养学生的数学建模思想和坚忍不拔的毅力,聘请专家对一些典型问题进行专题讲座。
热门数学建模论文(通用17篇)篇十
随着我国高等教育的发展,高校招生规模越来越大,而生源质量较低,特别是独立学院院校。就我校而言,绝大多数专业都开设了数学类课程。但在教学中,普遍认为理论性太强,与实际脱节严重,不能引起学生的学习兴趣。并且,传统教学忽视了学生用数学解决实际问题的能力,所以,进行数学教学改革势在必行。数学建模可培养学生利用数学知识解决实际问题的能力,通过数模方法对实际问题进行巧妙处理,让学生体会到数学不仅能传播理论知识和求解一些数学问题,还可将其应用到实际问题中,让学生看到一些实际模型的来龙去脉,提高学生的学习积极性。数学建模是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创新能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队合作精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好的培养。技能技术的掌握和团队合作精神对于独立学院学生将来进入社会十分重要,这也是衡量独立学院办学成功与否的一个方面。因此,独立学院的人才培养目标定位,既要达到本科生应具备的理论基础,又要有相对突出的专业技能,应培养“应用型本科”人才。因而,独立学院的数学课堂上应该多方面渗透数学模型的思想。
(一)人才培养创新的需要。
根据独立学院人才培养目标和实际情况,有针对性的加大基础课和实践环节教学的'比重,侧重于实践能力的培养,在专业课程体系中适当增加实验、实践教学内容,加强与社会实体的联系。力求培养出具有实际操作能力的高素质大学生。数学建模是将一个实际问题,对其作出一些必要的简化与假设,将其转化成一个数学问题,借助数学工具和数学方法精确或近似地解决该问题,并用数学结果解释客观现象、回答实际问题并接受客观实际的检验。数学建模能弥补传统数学教学在实际应用方面的不足,促进数学教师在现代化教学手段、教学模式方面的更新。数学建模有助于调动学生的学习兴趣,在计算机应用能力、实践能力和创新意识的培养方面都有着非常大的作用,以便学生将来能更好地适应工作岗位。
(二)高校教学改革的需要。
当今社会信息高度发达,竞争日益激烈,必须具备一定的创新意识和创新能力,否则很难适应社会信息时代的要求。传统的教学模式是以课堂理论讲授为主,学生绝大部分时间都集中学习书本知识,很少有机会接触社会,也难做到学以致用。绝大多数课程都是教师的一言堂,考试也是以教师讲课内容为主。学生忙于记录和背诵而闲置其聪慧的头脑。长期的灌输式教学导致学生明显缺乏学习的主动性,会听从而不会质疑,更不会形成开创性的观点,很难适应企事业单位动态的工作环境。数学作为一门传统基础学科,对独立学院的学生来说,学习上有一定的难度。我们的教学应以“必需,够用”为度。数学建模从形式到内容,都与毕业后工作时的条件非常相近,是一次非常好的锻炼,学生通过自主的学习,把实际的问题转化为数学理论解决,有助于学生创新能力的培养动手能力的提高,这也正是独立学院院校应用型本科人才培养的方向。
(三)学生参加数学建模竞赛的需要。
独立学院学生思维活跃,且比较注重个人能力素质的提高。很多学生愿意在学校参加一些竞赛来提高自己。全国大学生数学建模竞赛尤其受学生重视,但仍有很多大学生不了解这类竞赛,因此,在数学课堂上引入数学建模思想,学生既了解了数学建模,又对数学公式提起了兴趣,还有助于独立学院学生在全国大学生数学建模竞赛中取得优异成绩。
高等数学的作用表现在为各专业后续课程的学习提供必要的数学知识,培养各专业学生的数学思想与数学修养,全面提高大学生创新思维和应用能力。只有把数学建模思想融入数学教学中,才能调动学生学习数学的积极性,培养学生的创新能力,实现提高学生综合分析问题能力的最终目标。
作者:崔玮王文丽单位:中国地质大学长城学院信息工程系。
热门数学建模论文(通用17篇)篇十一
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
一次函数成本、利润、销售收入等。
二次函数优化问题、用料最省问题、造价最低、利润最大等。
幂函数、指数函数、对数函数细胞分裂、生物繁殖等。
三角函数测量、交流量、力学问题等。
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的`应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
热门数学建模论文(通用17篇)篇十二
摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
一、新课的引入需要发挥教师的作用。
教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。
二、在教学任务的设计上需要发挥教师的作用。
数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。
三、在新旧知识的联系点上需要发挥教师的作用。
建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。
四、在教学重点、难点上需要教师的引导。
教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
热门数学建模论文(通用17篇)篇十三
:随着经济的快速发展,我国的科学技术也得到了长足的进步,在计算机应用方面,从对计算机技术尚存新鲜感到运用成熟,可以说有了质的飞跃。在日常生活以及技术操作当中,计算机已经融入其中,广泛地应用于各行各业,笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。
数学建模;计算机技术;计算机应用
随着经济的快速发展,我国的科学技术也有了长足的进步,而与之密不可分的数学学科也有着不可小觑的进步,与此同时,数学学科的延伸领域从物理等逐渐扩展到环境、人口、社会、经济范围,使得其作用力逐渐增强。不仅如此,数学学科由原本的研究事物的性质分析逐渐转变到研究定量性质范围,促进了多方面多层次的发展,由此可见,数学学科的重要性质。在日常生活中,运用数学学科去解决实际问题时,首要完成的就是从复杂的事物中找到普遍的规律现象存在,并用最为清晰的数字、符号、公式等将潜在的信息表达出来,再运用计算机技术加以呈现,形成人们所要完成的结果。笔者以数学建模为例,分析了数学建模与计算机应用之间的关系,与此同时,也探寻了计算机应用技术在数学建模的辅助之下发挥的作用,并对数学建模进行概念定义,使得读者能够对数学建模的意义有着更深层次的了解,希望能够起到促进二者之间的良性发展。
从宏观角度上来讲,数学建模是更侧重于实际研究方面,并不仅仅是通过数字演示来完成事物的一般发展规律,与一般的理论研究截然不同。其研究范围之广,能够深入到各个领域当中,从任何一个相关领域中都能够找到数学学科的发展轨迹,从中不难看出数学学科的实际意义与鲜明特点。数学为一门注重实际问题研究的学科,这一性质方向决定了其研究的层次,其研究范围大到漫无边际的宇宙,小到对于个体微生物或者单细胞物体,综合性之强形成了研究范围广的特点。多个学科之间互相影响,从中找到互相之间存在的相互联系,其中有许多不能够被忽视的数学元素,且这些元素都是至关重要的,所以这个计算过程十分复杂,计算量与数据验算过程也十分耗费时间,因此需要充足的存储空间支持这一过程的运行。在数学建模的过程当中,所涉猎的数学算法并不是很简单,而建立的模型也遵循个人习惯,因此建成的模型也不是一成不变的,但是都能够得出相同的答案。正因如此,在数学建模的过程当中,就需要使用各种辅助工具来完成这一过程。由于计算机软件具有的高速运转空间,使得计算机技术应用于数学学科的建模过程当中,与数学建模过程密不可分息息相关。由此可见,计算机技术的应用水平对于数学学科的重要作用。
2。1计算机的独特性与数学建模的实际性特点计算机的独特性与数学建模的实际性特点,使得二者之间有着密不可分的联系,正是因为这种联系使得双方都能够有长足的发展,在技术上是起着互相促进的作用。计算机的广泛应用为数学建模提供了较为便利的服务,在使用过程当中,数学建模也能够起到完成对计算机技术的促进,能够在这一过程中形成更为便捷高速的使用方法与途径,使得计算机技术应用更为灵活,也可以说数学建模为计算机技术的实际应用提供了更为广阔的应用空间,从中不难发现,数学建模对于计算机应用技术的支持性。计算机应用技术需要合成的是多方面的技术支持,而数学建模则是需要首要完成的,二者之间是相互影响共同促进的作用。
2。2计算机为数学建模提供了重要的技术支持数学建模对于计算机应用技术的重要的指导意义与作用。第一点,计算机在其技术的支持之下,有着大量的存储空间能够完成存储资料的这一过程,许多重要资料在计算机技术的保护之下,存储时间较为长久,且保护力度较大,不容易被破坏及减少了不必要的人力以及物力;第二点,计算机是多媒体的一个分支,运用其成熟的互联网思维技术,能够完成数学建模从平面到空间的转化,能够提供更为成熟的模拟环境,从而提高实践的效率。由于数学建模过程的复杂化及对于实际问题的研究方向的特质,使得对于各项技术的要求就很高,所以,需要涉及的操作与数据量非常大,过程也十分复杂,常见的过程有三维打印、三维激光扫描等。这些都是需要计算机技术的支持才能够完成的,所以对于计算机技术的要求非常高,与此同时,计算机应用技术为数学建模提供了更为便捷、快速的解决方案与途径。
2。3数学建模为计算机的发展提供了基石计算机的产生起源于数学建模的过程,在二十世纪八十年代,由于导弹在飞行时的运行轨迹的计算量过大,人工无法满足这一高速率的运算条件,基于这一背景条件,产生了计算机,计算机应用技术由此拉开了序幕。数学建模的过程是需要计算机来完成的,在全部的过程当中,计算机参与计算的比重很大,从某种意义程度上来讲,计算机技术对于数学建模的发展是起着推动性的作用的,二者之间是有着联系的。
热门数学建模论文(通用17篇)篇十四
1、从应用数学出发数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。
2、从数学实验做起要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。
3、从计算机应用切入数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。
大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:
2、开设选修课拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍matlab、maple等计算软件课程),增加建立和解答数学模型的方法和技巧比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。
3、积极组织学生开展或是参加数学建模大赛比赛是各个选手充分发挥水平、展示自己智慧的途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的`角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如20xx年的《葡萄酒的评价》、《太阳能小屋的设计》,20xx年的《交巡警服务平台的设置与调度车灯线光源的计算》、20xx年的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。
4、加快教育方式的转变高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。
21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。
热门数学建模论文(通用17篇)篇十五
摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。
数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。
数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。
二、提高学生想象力,用数学建模简化问题。
对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。
三、选择合适的题目作为建模案例。
在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。
四、引导学生主动进行数学建模。
在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。
热门数学建模论文(通用17篇)篇十六
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段。
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段。
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段。
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段。
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段。
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义。
(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力。
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力。
所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成".现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程.
(四)加强数学建模教育有助于提高学生科技论文的撰写能力。
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的`模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作.
三、开展数学建模教育及活动的具体途径和有效方法。
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1.代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2.原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3.创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的.
(二)开展数模竞赛的专题培训指导工作。
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近20年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如20xx年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约1万多个本科参赛队中脱颖而出的。又如20xx年我校57队参加全国大学生数学建模竞赛,43队获奖,获奖比例达75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛。
全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语。
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
热门数学建模论文(通用17篇)篇十七
为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。
作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。
通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。
加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。
总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。
[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).
[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).