教案模板可以使教师思考教学的合理性和适应性,提高课堂教学的质量和水平。谨记教案模板只是一个指导,教师们应该根据具体情况进行灵活运用和个性化教学。
2023年高中数学说课稿分钟(案例17篇)篇一
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美。
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。
教学重点:运用类比、联想的方法探究不同条件下的轨迹。
教学难点:图形、文字、符号三种语言之间的过渡。
教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。
1、创设情景,引入课题
生活中我们四处可见轨迹曲线的影子。
演示:这是美丽的城市夜景图。
演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。
演示建筑中也有许多美丽的轨迹曲线。
设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。
2023年高中数学说课稿分钟(案例17篇)篇二
导数是微积分的核心概念之一,它为研究函数提供了有效的方法。在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵。这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念。通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。
2、教学的重点、难点、关键。
教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵。
1)从割线到切线的过程中采用的逼近方法;
2)理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等。
根据新课程标准的要求、学生的认知水平,确定教学目标如下:
1、知识与技能:。
通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:
通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。
3、情感态度与价值观:
对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:
学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了。
自主、合作、探究的学习方法。
教具:几何画板、幻灯片。
1.创设情境。
学生活动——问题系列。
问题1平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?
问题2如图直线l是曲线c的切线吗?
(1)与(2)与还有直线与双曲线的位置关系。
问题3那么对于一般的曲线,切线该如何定义呢?
【设计意图】:通过类比构建认知冲突。
学生活动——复习回顾。
导数的定义。
【设计意图】:从理论和知识基础两方面为本节课作铺垫。
2.探索求知。
学生活动——试验探究。
问一;求导数的步骤是怎样的?
第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。
【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。
问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。
【设计意图】:通过学生动手实践得到平均变化率表示割线pq的斜率。
问三;在的过程中,你能描述一下割线pq的变化情况吗?请在图像中画出来。
【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,q();从形的角度看,的过程中,q点向p点无限趋近,割线pq趋近于确定的位置,这个位置的直线叫做曲线在处的切线。
探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。
【设计意图】:借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。
问四;你能从上述过程中概括出函数在处的导数的几何意义吗?
【设计意图】:引导学生发现并说出:,割线pq切线pt,所以割线。
pq的斜率切线pt的斜率。因此,=切线pt的斜率。
1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;
2、通过学生对方法的选择,对学生的学习能力评价;
3、通过练习、课后作业,对学生的学习效果评价。
5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓。
2023年高中数学说课稿分钟(案例17篇)篇三
导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。
2、教学的重点、难点、关键
教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。
教学难点:理解导数的几何意义的本质内涵
1) 从割线到切线的过程中采用的逼近方法;
2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.
根据新课程标准的要求、学生的认知水平,确定教学目标如下:
1、知识与技能 :
通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。
过程与方法:
通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。
3、情感态度与价值观:
对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:
学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了
自主 、合作、探究的学习方法。
教具: 几何画板、幻灯片
1.创设情境
学生活动——问题系列
问题1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?
问题2 如图直线l是曲线c的切线吗?
(1)与 (2)与 还有直线与双曲线的位置关系
问题3 那么对于一般的曲线,切线该如何定义呢?
【设计意图】:通过类比构建认知冲突。
学生活动——复习回顾
导数的定义
【设计意图】:从理论和知识基础两方面为本节课作铺垫。
2.探索求知
学生活动——试验探究
问一;求导数的步骤是怎样的?
第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。
【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。
问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。
【设计意图】:通过学生动手实践得到平均变化率表示割线pq的斜率。
问三;在的过程中,你能描述一下割线pq的变化情况吗?请在图像中画出来。
【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,q();从形的角度看, 的过程中,q点向p点无限趋近,割线pq趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。
探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。
【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。
问四;你能从上述过程中概括出函数在处的导数的几何意义吗?
【设计意图】:引导学生发现并说出:,割线pq切线pt,所以割线
pq的斜率切线pt的斜率。因此,=切线pt的斜率。
1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;
2、通过学生对方法的选择,对学生的学习能力评价;
3、通过练习、课后作业,对学生的学习效果评价.
5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.
2023年高中数学说课稿分钟(案例17篇)篇四
《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。
基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。
(一)教材的地位和作用。
有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。
(二)教学目标。
1、联系生活情境了解扇形统计图的特点和作用。
2、能读懂扇形统计图,从中获取有效的信息。
3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。
(三)教学重点:
1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。
2、认识折线统计图,了解折线统计图的特点。
(四)教学难点:
1、能从扇形统计图中获得有用信息,并做出合理推断。
2、能根据统计图和数据进行数据变化趋势的分析。
本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。
1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。
2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。
《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。
(一)复习引新。
1、复习旧知。
提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?
2、引入新课。
(二)自主探索,学习新知。
新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。
三、课堂总结。
四、布置作业。
五、板书设计:
2023年高中数学说课稿分钟(案例17篇)篇五
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。
合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。
高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能。
会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
(二)过程与方法。
经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。
(三)情感态度价值观。
经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点。
由正弦函数的图象得到正弦函数的性质。
正弦函数的周期性和单调性。
此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
(一)新课导入。
首先是导入环节,在这一环节中我将采用复习的导入方法。
我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。
这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。
(二)新知探索。
接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。
让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。
学生一边看投影,一边思考如下问题:
(1)正弦函数的定义域是什么。
(2)正弦函数的值域是什么。
(3)正弦函数的最值情景如何。
(4)正弦函数的周期。
(5)正弦函数的奇偶性。
(6)正弦函数的递增区间。
给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。
1.定义域:y=sinx定义域为r。
2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]。
3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。
4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。
5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。
6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。
在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。
(三)课堂练习。
第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。
经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。
(四)小结作业。
最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。
在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。
经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。
2023年高中数学说课稿分钟(案例17篇)篇六
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3.重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3.学情分析:(说学法)。
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
最后我来具体谈谈这一堂课的教学过程:
4.教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点。
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书。
(8)布置作业。
(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分。
集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。
第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。
第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。
第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。
2023年高中数学说课稿分钟(案例17篇)篇七
奇偶性是人教a版第一章集合与函数概念的第3节函数的基本性质的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。
2、学情分析。
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
3、教学目标。
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】。
1、能确定一些简单函数的奇偶性。
2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】。
经历奇偶性概念的构成过程,提高观察抽象本事以及从特殊到一般的归纳概括本事。
【情感、态度与价值观】。
经过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上到达了预期效果。
4、教学重点和难点。
重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下头的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括本事比较薄弱,这对建构奇偶性的概念造成了必须的困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。
1、教法。
根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维本事。从课堂反应看,基本上到达了预期效果。
2、学法。
让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。
(一)设疑导入、观图激趣。
由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、构成概念。
在这一环节中共设计了2个探究活动。
探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,()然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三)学生探索、领会定义。
探究3下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)。
(四)知识应用,巩固提高。
在这一环节我设计了4道题。
例1确定下列函数的奇偶性。
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。
例1设计意图是归纳出确定奇偶性的步骤:
(1)先求定义域,看是否关于原点对称;
(2)再确定f(-x)=-f(x)还是f(-x)=f(x)。
例2确定下列函数的奇偶性:
例3确定下列函数的奇偶性:
例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?
例4(1)确定函数的奇偶性。
(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。
(五)总结反馈。
在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用本事、增强错误的预见本事是提高数学综合本事的很重要的策略。
(六)分层作业,学以致用。
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1、3a组第6题。
思考题:课本第39页习题1、3b组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。
2023年高中数学说课稿分钟(案例17篇)篇八
抛物线焦点性质的探索(说课)
一、
1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。
2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:
(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。
(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。
3 教学内容、重点、难点及关键 本节安排两节课,
第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;
第二节课:证明第一节所得到的有关性质。
重点:
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
难点;
(1)如何利用《几何画板》探索、发现抛物线焦点的性质;
(2)如何证明这些性质。
学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。
学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。
4.1 使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型 问题1 回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。 由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。
2023年高中数学说课稿分钟(案例17篇)篇九
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的'方法,领会方程、数形结合等思想。
1、感受动点轨迹的动态美、和谐美、对称美。
教学重点:运用类比、联想的方法探究不同条件下的轨迹。
教学难点:图形、文字、符号三种语言之间的过渡。
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。
2023年高中数学说课稿分钟(案例17篇)篇十
开始:各位专家领导,好!
今天我将要为大家讲的课题是。
首先,我对本节教材进行一些分析。
一、教材结构与内容简析。
本节内容在全书及章节的地位:《》是高中数学新教材第册()第章第节。在此之前,学生已学习了,这为过渡到本节的学习起着铺垫作用。本节内容是部分,因此,在中,占据的地位。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:
二、教学目标。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1基础知识目标:
2能力训练目标:
3创新素质目标:
4个性品质目标:
三、教学重点、难点、关键。
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
重点:通过突出重点。
难点:通过突破难点。
关键:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、教法。
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生。
“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:,应着重采用的教学方法。即:
五、学法。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:
2、实践:
3、能力:
最后我来具体谈一谈这一堂课的教学过程:
六、教学程序及设想。
1、由引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:
2、由实例得出本课新的知识点是:
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习。
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
7、板书。
8、布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
注意时间掌握。
六、注意灵活导入新知识点。
电脑课件。
使用投影。
根据时间进行增删。
2023年高中数学说课稿分钟(案例17篇)篇十一
敬的各位专家、评委:
下午好!
我的抽签序号是____,今天我说课的课题是《_______》第__课时。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
(一)地位与作用
______是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面______;另一方面______。同时,__________________。
(二)学情分析
(1)学生已熟练掌握_________________。
(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。
(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
(4) 学生层次参次不齐,个体差异比较明显。
新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标
(1)知识与技能
使学生理解_______,初步掌握______。
(2)过程与方法
引导学生通过观察、归纳、抽象、概括,______;能运用____解决简单的问题;使学生领会______的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观
在______的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
(二)重点难点
本节课的教学重点是________________________,教学难点是_____________________。
(一)教法
基于本节课的内容特点和__学生的年龄特征,按照__市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
(二)学法
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
(一)教学过程设计
教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。
(1)创设情境,提出问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
(2)引导探究,建构概念。
(3)自我尝试,初步应用。
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(5)小结归纳,回顾反思。
(二)作业设计
我设计了以下作业:
(1)必做题
(2)选做题
(三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
2023年高中数学说课稿分钟(案例17篇)篇十二
2、教材所处地位、作用。
3、教学目标。
(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性。
的方法;
4、重点与难点。
教学重点(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的单调性.。
教学难点(1)函数单调性的知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性.。
二、教法分析与学法指导。
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.。
在学法上:
教学。
环节。
设计意图。
问题。
情境。
(播放中央电视台天气预报的音乐)。
满足在定义域上的单调性的讨论.。
3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.。
4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.。
2023年高中数学说课稿分钟(案例17篇)篇十三
1、地位、作用和特点:
《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。
特点之二是:。
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:a、b、c。
(2)能力目标:a、b、c。
(3)德育目标:a、b。
教学的重点和难点:
(1)教学重点:
(2)教学难点:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课新课教学。
反馈发展。
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的'教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出,并依。
据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。
演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
(一)、课题引入:
教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。c、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
2023年高中数学说课稿分钟(案例17篇)篇十四
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。
会求闭区间上连续开区间上可导的函数的最值。
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
(1)理解函数的最值与极值的区别和联系。
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值。
(1)认识事物之间的的区别和联系。
(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。
(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。
根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。
本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。
对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。
本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。
2023年高中数学说课稿分钟(案例17篇)篇十五
今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。
教材的地位和作用。
本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。
学情分析。
本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1.知识与技能。
理解二次函数中参数a,b,c,h,k对其图像的影响;
2.过程与方法。
通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。
3.情感态度与价值观。
通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下。
重点:
二次函数图像的平移变换规律及应用。
难点:
探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。
1、教法分析。
基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析。
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。
为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。
(1)知识导入。
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。
(2)讲授新课。
例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像。
让学生画出他们的图像并观察函数图像的`特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。
(3)巩固练习。
我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。
(4)归纳总结。
我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。
(5)布置作业。
略
2023年高中数学说课稿分钟(案例17篇)篇十六
尊敬的各位考官:
大家好!
我是今天的x号考生,今天我说课的题目是《直线与平面平行的判定》。
高中数学课程以学生发展为本,提升数学学科核心素养。这节课我将秉承这一教学理念,从教材分析、教学目标、教学过程等几个方面来展开我的说课。
本节课选自人教a版高中数学必修2第二章第2节。此前学生对空间立体几何已经有了一定的感知。通过本节课的学习,能使学生进一步了解空间中直线与平面平行关系的判定方法,培养学生的逻辑思维和空间想象能力。
学生已经学习了空间中点、直线、平面间的位置关系,知道若直线与平面平行,则没有公共点,但直接利用定义无法进行判断。因而我会注意在教学时逐步引导学生,在辩证思考中探索直线与平面平行的条件。
根据以上对教材的分析和对学情的把握,我设置本节课的教学目标如下:
掌握直线与平面平行的判定定理,会用文字语言、符号语言和图形语言描述判定定理,并会进行简单应用。
通过直观感知、观察、操作确认的认知过程,培养空间想象力和逻辑思维能力,体会“降维”的思想。
通过生活中的实例,体会平行关系在生活中的广泛应用;在探究线面平行判定定理的过程中,形成学习数学的积极态度。
根据学生现有的知识储备和知识本身的难易程度,我设置本节课教学重点为:直线与平面平行的判定定理。教学难点为:直线与平面平行的判定定理的探究。
为达成教学目标,突破教学重难点,本节课我将采用讲授法、自主探究法、练习法等教学方法,以达到教与学的和谐完美统一。
下面我将重点谈谈我的教学过程。
导入环节我会带领学生从文字语言、图形语言和符号语言这三个角度复习直线与平面有哪些位置关系。接着我会请学生思考,该如何判定直线与平面平行。根据定义,只需判定直线与平面没有公共点即可。但直线无限伸长,平面无限延展,如何保证直线与平面无公共点。由此引发认知冲突,引入本节课的学习。
通过复习导入,不仅巩固了之前所学,建立起新旧知识之间的联系,而且能够有效激发起学生的学习兴趣,从而为下面的学习打好基础。
接下来是新知讲解环节。
我会请学生观察,教室门扇的两边是平行的,当门扇绕着一边转动时,观察门扇转动的一边和门框所在平面有怎样的位置关系。并组织学生动手操作,将书本平放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系。
学生不难看出其中的平行关系。在此基础上,我会请学生同桌两人交流讨论,如果直线与平面平行,则这条直线与平面内多少条直线平行。如果这条直线平行于平面内的无数条直线,那么这条直线是否一定与这个平面平行。
除了知道知识,学生还要能对知识进行应用。我会出示以下练习题:求证空间四边形相邻两边中点的连线平行于另外两边所在的平面。结合这一练习题,我会进一步强调,线面平行问题可转化为线线平行问题。这也为之后线面、面面关系的学习奠定基础。
课堂小结部分,我会充分发挥学生的主体性,请学生说一说本节课的收获。收获不仅仅只是知识方面,也可以说一说这节课学到的思想方法等,进一步培养学生的综合素质。
课后作业我会请学生完成书上相应练习题,使学生在课后也能得到思考,夯实学生对于新知的掌握。
我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计:
略。
2023年高中数学说课稿分钟(案例17篇)篇十七
首先,我对本节教材进行一些分析:。
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3.重点,难点以及确定依据:
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
重点:通过突出重点。
难点:通过突破难点。
关键:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的`原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3.学情分析:(说学法)。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
最后我来具体谈谈这一堂课的教学过程:
4.教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点。
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书。
教学程序:
课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分。