通过制定教学工作计划,可以有序地安排教学内容和教学活动,提高教学效果。查看以下这些教学工作计划范文,或许能帮助您更好地规划和组织教学工作。
最优解简单的方程教案(案例16篇)篇一
2.过程方法。
通过化学方程式中物质间的质量比,初步理解反应物、生成物之间的质和量的关系。
3.情感态度价值观。
认识定量研究对于化学科学发展的重大作用。
教学重难点。
【教学难点】物质之间量的关系。
教学过程。
一、导入新课:
创设学习情境,引出探究问题。
二、课内探究:
【提出问题】为了满足0.4吨液氢充分燃烧,你会在助燃仓中至少填充多少吨液氧呢?
要求:(1)先在学案上写出计算过程;。
(2)组内交流计算依据。
按照教师要求,先独立完成计算过程,然后组内交流。
并得出如下结论:在化学反应中,反应物和生成物之间的质量比是成比例关系的。因此,利用正比例关系,根据化学方程式和已知的一种物质的质量(反应物或生成物),可求出反应中其他物质的质量。
帮助学生建立化学方程式中各物质之间的质量关系,这是根据化学方程式进行计算的主要依据。
2.【提出问题】各小组在刚才讨论的基础上,思考你的计算过程有哪几个步骤?
学生1:先写出反应的化学方程式,然后列出比例式;。
学生2:需要先设未知量为xg;。
学生3:最后还需要作答。
……。
给学生提供充分自主学习的机会,让学生先自主讨论得出不完善、不准确的步骤、格式,然后通过阅读教材进行对比,发现问题,纠正问题,从而自主构建解题的步骤和格式。
教师的讲解是对学生思维过程的一个概括提升,而不是将一个程序化的步骤灌输给学生。
【讲解】教师利用学生的讨论,通过投影讲解强化计算的基本步骤和格式要求。
(1)设未知量;。
(2)写出有关反应的正确化学方程式;。
(3)写出相关物质的相对分子质量和已知量、未知量;。
(4)列出比例式,求解;。
(5)简明地写出答案。
阅读教材,对比分析教材与自己总结的解题过程,补充、纠正:
(2)未知量应该设为“需要液氧的质量为x”,不应该有“g”。
最优解简单的方程教案(案例16篇)篇二
教学内容:。
教科书第8-9页的例7和“试一试”、“练一练”,练习二的5-7题。
教学目标:。
1.使学生在具体的情境中,根据题中数量间的相等关系,能正确列方程解决简单的实际问题,掌握列方程解决实际问题的思考方法。
2.使学生在经历将实际问题抽象成方程的过程中,积累将现实问题数学化的经验,进一步感受方程的思想方法和应用价值。
3.通过学习,进一步培养学生独立思考,主动与他人合作,自觉校验的良好习惯。
教学重点、难点:
1、引导学生加强审题,弄清题意,正确理解题中的数量关系。允许学生用不同的数量关系解答。
教具准备:
题图、小黑板。
教学过程:
一、教学新课。
1.引入谈话。
师:同学们已经学会了利用等式的性质解一些方程,我们还可以运用解方程的方法解决一些实际问题。
2.教学例7。
(1)出示例7情境图。
师问:从图中你获得哪些信息?
指名回答,教师引导归纳。
生:小军的成绩-0.06米=小刚的成绩。
生:小刚的成绩+0.06米=小军的成绩。
生:小军的成绩-小刚的成绩=0.06米。
师提出:数量关系都是正确的。
师问:运用这些数量关系解题时,哪个量是未知的?(小军的成绩),在“小军的成绩”上打“?”。
师指出:“小军的成绩”是未知的,我们可以用未知数“x”来表示,在列方程解决问题时,我们要先把未知的量设为x,同时要先写“解”。
师示范:解:设小军的跳高成绩是x米。
师追问:根据上面的数量关系,可以列什么样的方程呢?
师指出:像第3种这样,x的值表示结果的,我们可以尽量避免。
根据前2个方程,大家在小组中说说:x,1.39,0.06及方程的左边,右边各表示什么?看看列出的方程是否符合数量关系。
学生在小组中交流。
师追问:会解这个方程吗?在小组中选一个,解答后,说说自己的方法。
学生字组中完成,教师巡视指导,完成后展示学生作业。
x=1.45x=1.45。
指名汇报方法。
师指出:因为在“解:设……”时已经设了“x米”,因此求出的x的值不写单位名称。
师追问:怎样可以知道解答的是否正确呢?你准备怎样检验?
学生说自己的检验方法,教师点评。
(2)小结方法。
3.教学“试一试”
(1)指名读题,理解题意。
(2)师问:哪一个条件告诉了我们题中的数量关系?
数量关系是什么?(非洲象的体重*33=蓝鲸的体重)。
根据这个数量关系怎样列方程呢?
(3)学生在小组中完成解答并汇报方法,师巡视指导。
解:设这头非洲象大约重x吨。
33x=165。
x=165/33。
x=5。
答:(略)。
4.指导完成“练一练”。
(1)完成第(1)小题。
师问:题中有怎样的等量关系?(去年的体重+2.5千克=今年的体重,今年的体重-去年的体重=2.5千克)。
方程怎样列?(x+2.5=3636-x=2.5)。
学生独立完成解答并检验。
(2)完成第(2)小题。
师问:知道哪些条件,求什么问题?
单价、数量、总价之间有什么基本等量关系呢?(单价*数量=总价)。
师追问:方程怎样列呢?
解:设买了x本笔记本。
6.5x=78。
学生独立完成解答并检验。
二、巩固练习。
1.指导完成练习二第5题。
(1)导理解每幅图的意思。
(2)说一说题中的等量关系。
(3)学生独立列式解答。
(4)汇报与方法交流。
2.完成练习二第6、7题。
(1)学生独立完成。
(2)指名汇报,集体评价。
师追问:根据什么数量关系来列方程的。你是怎样想的?
三、课堂总结。
板书:
等式的性质和解方程(二)。
解:设小军的跳高成绩是x米。
x-1.39=0.06x-0.06=1.39。
x=1.39+0.06x=1.39+0.06。
x=1.45x=1.45。
答:小军的跳高成绩是1.45米。
教学后记:
列方程解决实际问题,关键在于让学生理解题意,启发学生从合理的角度理清数量关系,列出相应的方程。要避免出现“x=……”或者“……=x”的形式。
最优解简单的方程教案(案例16篇)篇三
1.渗透数学中的语感训练,使学生能熟练找出问题中相等关系的量,根据其数量关系列出方程。
2.使学生掌握应用等式的性质解两步解的方程。
3.注重联系生活实际,获得成功体验。
学生能熟练根据其数量关系列出方程。
注重联系生活实际,获得成功体验。
找出下列句中的数量关系。
松树和杨树一共56棵。
学校的建筑面积是总面积的一半。
底楼高3.4米,其余三层平均每层高2.8米,这幢楼高多少米?
小亮现在的身高比出生时的3倍高0.04米。
三瓶墨水的价钱比一个文件夹便宜2.8元。
1.练习二第9题。
指名板演,其余生独立完成在自备本上后集体校对。
说说注意点和解两步方程的步骤。
2.练习二第10题。
先要求学生只列出方程,校对所列方程根据的等量关系后再解方程。
3.练习二第11题。
生理解题意,找出数量关系,独立列方程解答,集体交流。
4.练习二第12题。
生理解题意,并独立完成在自备本上。校对,说说题目的意思,注意要求两问。
5.练习二第13题。
生理解题意,让学生找准对应的量,提醒学生有2问。集体交流。
6.练习二第14题。
生独立完成后校对,其中12题的物品有“文件夹”和“墨水”,各一个与12瓶,总价25.10元。
7.练习二第15题。
学生利用公式独立列式计算,集体交流时让学生说说是怎样计算的?
师:今天在解方程的过程中,你有哪些进步?
补充习题。
最优解简单的方程教案(案例16篇)篇四
教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的`性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
一、回顾与整理
1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂总结
通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?
最优解简单的方程教案(案例16篇)篇五
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。
难点:推导等式性质(一)。
一架天平、课件及班班通。
一、创设情境,以情激趣。
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知。
(一)等式两边都加上一个数。
1、课件出示天平。
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平。
操作、演示、讨论、板书:
5=55+2=5+2。
x=10x+5=15。
观察等式,发现什么规律?
3、探索规律。
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数。
观察课件,你又发现了什么?
学生汇报师板书:
x+2=10。
x+2-2=10-2。
x=8。
(三)运用规律,解方程。
三、巩固练习。
1、完成课本68页“练一练”第2题。
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结。
这节课你学到了什么?学生交流总结。
板书设计:解方程(一)。
x+2=10。
解:x+2-2=10-2(方程两边都减去2)。
x=8。
最优解简单的方程教案(案例16篇)篇六
四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。
第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。
第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。
全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。
两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。
1. 从各个方程的特点出发,使用不同的转化方法。
解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。
解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成
(ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。
2. 转化后的简单方程,教法不同。
例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。
例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的.特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。
3. 加强解方程的练习。
前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。
还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。
列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。
相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。
1. 灵活开展思维活动,找出相等关系。
较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。
寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。
怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。
2. 加强写式练习,进一步把握数量关系,为列方程打基础。
含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。
练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。
练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。
3. 列方程解答新颖的问题,拓展等量关系。
本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。
练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。
例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。
最优解简单的方程教案(案例16篇)篇七
教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
一、回顾与整理
1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂总结
通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?
最优解简单的方程教案(案例16篇)篇八
教学内容:
教科书p13例9、p14练一练、p16练习三第1~3题。
教学目标:
1.使学生在解决实际问题的过程中,理解并掌握形如ax+bx=c的方程的解法,会列上述方程解决两步计算的实际问题。
2.掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点:
掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
教学难点:
能正确找出应用题中数量间的相等关系。
教学过程:
一、谈话导入。
今天研究一个与颐和园有关的数学问题。
二、学习新知。
1.p13例9。
(1)指名读题,分析数量关系。
用线段图表示出题目中数量之间的关系吗?
学生尝试画图,集体交流。
根据线段图得到:水面面积+陆地面积=颐和园的占地面积。
启发:这大题目中有两个未知数,我们设谁为x呢?
(2)列方程并解方程。
指名学生列出方程,鼓励学生独立求解。
如果用x表示陆地面积,那么可以怎样表示水面面积呢?
追问:这道题可以怎样检验?
检验:a、72.5+72.53=290(公顷)b、217.572.5=3。
(3)观察我们今天学习的'方程,与前面的有什么不同?
小结:像这样含有两个未知数的问题我们也可以列方程来解答。
(4)学生独立完成p14练一练第1题。
三、巩固练习。
1.p14练一练第2题。
教师引导学生找出数量关系式。
陆地面积2.4-陆地面积=2.1。
2.解方程。
2x+3x=60。
3.6x-2.8x=12。
100x-x=198。
3.根据线段图列出方程。
4.解决实际问题:(列方程解)。
(2)一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
在做这道题时你认为应注意什么呢?
四、全课小结。
在解答这一类应用题时应注意什么?
五、课堂作业。
p16练习三第2-3题。
最优解简单的方程教案(案例16篇)篇九
教科书p17第9~15题。思考题。
1.通过练习,使学生进一步掌握列方程解决实际问题的思考方法,提高列方程解决问题的能力。
2.在练习中,使学生进一步感受方程的思想方法和应用价值,获得成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。
掌握列方程解决实际问题的基本思考方法。
根据情境,学生自己提出问题、解决问题。
一、基本练习。
1.先设要求的数为x,再列出方程。(口答且不解答)。
(1)一个数的12倍是84,求这个数。
(2)2.9比什么数少1.5?
(3)什么数与2.4和是6?
2.根据题意说出等量关系式并列方程。
(1)果园里有124棵梨树和桃树,梨树是桃树棵数的3倍。桃树梨树各有多少棵?
(2)书架上层有36本书,比下层少8本。书架下层有多少本书?
提问:每一题的数量关系式分别根据哪一个条件列的?
师生交流。
二、指导练习。
1.p17第9题。
(1)引导学生说一说数量关系式。
天鹅只数+丹顶鹤只数=960。
(2)根据关系式列方程。
x+2.2x=960。
2.p17第10题。
(1)引导学生说一说数量关系式。
六年级植树棵数-五年级植树棵树=24。
(2)根据关系式列方程。
1.5x-x=24。
3.p17第13题。
(1)引导学生说一说数量关系式。
历史故事总价+森林历险记总价=83。
(2)根据关系式列方程。
7x+124=83。
三、综合练习。
1.p17第11~12题。
(1)学生先说一说数量关系式。
(2)根据关系式列方程。
(5)集体评讲。
四、思考题。
(1)引导学生说一说等量关系式。
速度差追击时间=路程差。
甲路程-乙路程=路程差。
(280-240)x=400。
280x-240x=400。
五、课堂小结。
今天这节课是练习课,有谁来简单总结一下呢?还有什么问题吗?
板书设计:
列方程解决实际问题练习课。
天鹅只数+丹顶鹤只数=960六年级植树棵数-五年级植树棵树=24。
x+2.2x=9601.5x-x=24。
历史故事总价+森林历险记总价=83速度差追击时间=路程差甲路程-乙路程=路程差。
7x+124=83(280-240)x=400280x-240x=400。
最优解简单的方程教案(案例16篇)篇十
本课的教学内容是一个数(已知)是另一个数的几倍多(或少)几,求另一个数。教学注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。让学生明确正确找出题中的等量关系是最为关键的。通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。
反思这一节课,做得好的方面是:一是从学生的认知水平出发,循序渐进,通过“句――式――方程”的思维过程,让学生感受方程解题的基本方法:即找到了等量关系,方程就自然而然,水到渠成了。二是练习形式多样,练习有层次。由简到难,有坡度,但目的只有一样,就是让学生通过这些练习能很快找到等量关系,正确列出方程。
不足的方面是:练习的重点在于找准数量关系式。课堂上大量提问了学生应用题的数量关系式是什么,并进行了专项训练,但在进行列方程解应用题时,只满足了让学生说出数量关系式是什么,应该让中下学生再再说说关键句是什么,是根据哪句话找出来的,分析题时可先用铅笔画出来,分清已知量和未知量,用相应的未知数和具体数字表示出来,转化成等式,从而把实际问题转化成数学问题,再利用已有知识解决问题。
最优解简单的方程教案(案例16篇)篇十一
(学生活动)解下列方程:
(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.
(学生活动)请同学们口答下面各题.
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.
因此,上面两个方程都可以写成:
(1)x(2x+1)=0(2)3x(x+2)=0。
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1解方程:
思考:使用因式分解法解一元二次方程的'条件是什么?
解:略(方程一边为0,另一边可分解为两个一次因式乘积.)。
练习:下面一元二次方程解法中,正确的是()。
c.(x+2)2+4x=0,∴x1=2,x2=-2。
d.x2=x,两边同除以x,得x=1。
教材第14页练习1,2.
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
教材第17页习题6,8,10,11。
最优解简单的方程教案(案例16篇)篇十二
了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
学生活动:列方程.
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果,那么点c叫做线段ab的黄金分割点.
如果假设ab=1,ac=x,那么bc=________,根据题意,得:________.
整理得:_________.
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
移项,得:4x2-26x+22=0。
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式.
解:去括号,得:x2+2x+1+x2-4=1。
移项,合并得:2x2+2x-4=0。
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
教材p32练习1、2。
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可.
证明:m2-8m+17=(m-4)2+1。
∵(m-4)20。
(m-4)2+10,即(m-4)2+10。
不论m取何值,该方程都是一元二次方程.
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
最优解简单的方程教案(案例16篇)篇十三
1、结合具体情境初步理解方程的意义,会用方程表示简单的等量关系。
2、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。
3、能有方程解决一些简单的现实问题。在解决问题的过程中,感受方程与现实生活的紧密联系,形成应用意识。
解简单方程和用方程解决问题既是本单元的重点也是难点。
过渡语:今天我们来学习新的内容,简易方程。
(一)讲述:怎样实现这个目标呢?靠大家自学,怎样自学呢?请齐读自学指导。
(二)出示自学指导:认真看课本p5557的内容,
重点看图与文字,认真思考红点部分的问题。
5分钟后,比谁做的题正确率高。
师:自学竞赛开始,比谁看书认真,自学效果好!
(一)过渡:下面自学开始,比谁自学后,能做对检测题。
(二)看一看。
生认真看书,师巡视并督促每个学生认真自学。(要保证学生看够5分钟,学生可以看看、想想,如果学生看完,可以复看。)。
(三)做一做。
1、过渡:同学们看完了吗?看完的`同学请举手?好,下面就来考考大家。要比谁做得又对又快,比谁字体端正,数位对齐,数字要写的大些,数字间要有一定的间距(要划出学生板演的位置)。
2、板演练习,请两名(最差的同学)来上讲台板演,其余同学做在练习本上。教师巡视,要找出学生中的错误,并板书。
1、学生更正。
教师指导:发现错了的请举手!点名让学生上台更正。提示用红色粉笔改,哪个数字错了,先划一下,再在旁边改,不要擦去原来的。
2、讨论。(议一议)。
(1)第一题哪几个错了,错在哪里,说出原因。
(2)第二题看图列方程,看做得对不对,不对,说出错因。
3、评议板书和正确率。
4、同桌交换互改,还要改例题中的题,有误订正,统计正确率及时表扬。
谈话:我们今天学习了什么内容?你对什么印象最深?从中你明白了什么?
最优解简单的方程教案(案例16篇)篇十四
教科书第12~13页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
一、回顾与整理。
1、谈话引入。本单元我们学习了哪些内容?你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
3、小结。同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用。
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。单价、数量、总价之间有怎样的数量关系?指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂总结。
通过回顾与整理,大家共同复习了有关方程的知识,你还有什么疑问吗?
亲情方程式作文。
九年级上册化学方程式课件。
提高学生化学方程式学习效率初探论文。
对不确定系数化学方程式的探讨论文。
虚位移原理到拉格朗日方程-物理学毕业论文。
最优解简单的方程教案(案例16篇)篇十五
教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。
教学目标:
1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。
2、通过小组合作,进一步培养学生探索的意识,发展思维能力。
3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。
教学过程:
一、练习与应用。
1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。
2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)。
二、探索与实践。
1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。
三、与反思。
在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。
四、阅读“你知道吗”可以再查找资料,详细了解。
五、课堂这节课我们复习了哪些内容?你有了哪些收获?
最优解简单的方程教案(案例16篇)篇十六
1、知识目标:
(1)理解“理想气体”的概念,理想气体状态方程(1)。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2、能力目标。
通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3、情感目标。
通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
1、理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2、对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
1、投影幻灯机、书写用投影片。
2、气体定律实验器、烧杯、温度计等。
玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
1、关于“理想气体”概念的教学。
设问:
(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由。
实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。
出示投影片(1):
说明讲解:投影片(l)所示是在温度为0℃,压强为pa的条件下取1l几种常见实际气体保持温度不变时,在不同压强下用实验测出的pv乘积值,物理教案《理想气体状态方程(1)》。从表中可看出在压强为pa至pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为pa时,玻意耳定律就完全不适用了。
这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循玻意耳定律和查理定律。而且不同的实际气体适用的温度范围和压强范围也是各不相同的.。为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循玻意耳定律和查理定律。我们把这样的气体叫做“理想气体”。(板书“理想气体”概念意义。)。
2.推导理想气体状态方程。
前面已经学过,对于一定质量的理想气体的状态可用三个状态参量p、v、t来描述,且知道这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。它们共同表征一定质量理想气体的唯一确定的一个状态。根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为(),经过某变化过程,到末状态时各状态参量变为(),这中间的变化过程可以是各种各样的,现假设有两种过程:
第一种:从()先等温并使其体积变为,压强随之变为,此中间状态为()再等容并使其温度变为,则其压强一定变为,则末状态()。
第二种:从()先等容并使其温度变为,则压强随之变为,此中间状态为(),再等温并使其体积变为,则压强也一定变为,也到末状态(),如投影片所示。
出示投影片(2):
将全班同学分为两大组,根据玻意耳定律和查理定律,分别按两种过程,自己推导理想气体状态过程。(即要求找出与间的等量关系。)。
基本方法是:解联立方程或消去中间状态参量或均可得到:
这就是理想气体状态方程。它说明:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
3.推导并验证盖·吕萨克定律。
设问:(1)若上述理想气体状态方程中,,方程形式变化成怎样的形式?
答案:或。
(2)本身说明气体状态变化有什么特点?
答案:说明等效地看作气体做等压变化。(即压强保持不变的变化)。
由此可得出结论:当压强不变时,一定质量的理想气体的体积与热力学温度成正比。
这个结论最初是法国科学家盖·吕萨克在研究气体膨胀的实验中得到的,也叫盖·吕萨克定律。它也属于实验定律。当今可以设计多种实验方法来验证这一结论。今天我们利用在验证玻意耳定律中用过的气体定律实验器来验证这一定律。
演示实验:实验装置如图所示,此实验保持压强不变,只是利用改变烧杯中的水温来确定三个温度状态,这可从温度计上读出,再分别换算成热力学温度,再利用气体实验器上的刻度值作为达热平衡时,被封闭气体的体积值,分别为,填入下表:
出示投影幻灯片(3):
然后让学生用计算器迅速算出、、,只要读数精确,则这几个值会近似相等,从而证明了盖·吕萨克定律。
4.课堂练习。
出示投影幻灯片(4),显示例题(1):
教师引导学生按以下步骤解答此题:
(1)该题研究对象是什么?
答案:混入水银气压计中的空气。
(2)画出该题两个状态的示意图:
(3)分别写出两个状态的状态参量:
(s是管的横截面积)。
(4)将数据代入理想气体状态方程:
得
解得。
1.在任何温度和任何压强下都能严格遵循气体实验定律的气体叫理想气体。
2.理想气体状态方程为:
3.盖·吕萨克定律是指:一定质量的气体在压强不变的条件下,它的体积与热力学温度成正比。
1.“理想气体”如同力学中的“质点”、“弹簧振子”一样,是一种理想的物理模型,是一种重要的物理研究方法。对“理想气体”研究得出的规律在很大温度范围和压强范围内都能适用于实际气体,因此它是有很大实际意义的。
2.本节课设计的验证盖·吕萨克定律的实验用的是温州师院教学仪器厂制造的j2261型气体定律实验器;实验中确定的三个温度状态应相对较稳定(即变化不能太快)以便于被研究气体与烧杯中的水能达稳定的热平衡状态,使读数较为准确。建议选当时的室温为,冰水混合物的温度,即0℃或0℃附近的温度为,保持沸腾状态的温度,即100℃或接近100℃为。这需要教师在课前作充分的准备,才能保证在课堂得出较理想的结论。