教学工作计划是教师进行教学管理和教学评估的重要依据,也是学校进行质量监控和教学改进的重要参考。下面是一些经典的教学工作计划范文,供大家参考和学习。
精选勾股定理应用教案(案例15篇)篇一
教学目标:
1、知识目标:
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
教学过程:
1、新课背景知识复习。
(1)三角形的三边关系。
(2)问题:(投影显示)。
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得。
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边。
(2)学生根据上述学习,提出自己的问题(待定)。
3、定理的证明方法。
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形。
方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。
以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明。
4、定理与逆定理的应用。
5、课堂小结:
已知直角三角形的两边求第三边。
已知直角三角形的一边,求另两边的关系。
6、布置作业:
a、书面作业p130#1、2、3。
b、上交作业p132#1、3。
精选勾股定理应用教案(案例15篇)篇二
教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
教学重点:平行四边形的判定方法及应用。
教学难点:平行四边形的判定定理与性质定理的灵活应用。
引
二.探。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
证一证。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
证明:(画出图形)。
三.结。
两组对边分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
四.用。
精选勾股定理应用教案(案例15篇)篇三
1、通过拼图,用面积的方法说明勾股定理的正确性.
2、通过实例应用勾股定理,培养学生的知识应用技能.
一、学前准备:
1、阅读课本第46页到第47页,完成下列问题:。
2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的'图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)。
二、合作探究:
(一)自学、相信自己:
(二)思索、交流:
(三)应用、探究:
(四)巩固练习:
1、如图,64、400分别为所在正方形的面积,则图中字。
母a所代表的正方形面积是_________。
三.学习体会:
本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。
2②图。
四.自我测试:
五.自我提高:
精选勾股定理应用教案(案例15篇)篇四
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
精选勾股定理应用教案(案例15篇)篇五
1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。
3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。
精选勾股定理应用教案(案例15篇)篇六
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点。
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
精选勾股定理应用教案(案例15篇)篇七
教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
精选勾股定理应用教案(案例15篇)篇八
教学目标:
1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:
课前准备:
多媒体ppt,相关图片。
教学过程:
(一)情境导入。
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
精选勾股定理应用教案(案例15篇)篇九
一、输入少量拼音。
如果需要的拼音不多,可插入文本框,用小写英文来输入不含声调的音节,再借助中文输入法工具条上的软键盘插入含声调的元音字母。
图片1:输入无声调音节。
图片2:用软键盘输入含声调的元音字母。
二、拼音的显示与隐藏。
如果想控制拼音的显示和隐藏,只要设置拼音的“自定义动画”效果为单击相应汉字时出现即可。
三、整行汉字输入拼音。
1、输入汉字,用拼音指南加强版添加拼音。
2、用wps应用中心集成的屏幕截图功能分别截取拼音和汉字,到wps演示中粘贴。
四、制作“看拼音写汉字”幻灯片。
期中、期末复习少不了要出大量的看拼音写汉字题目给学生练习,用幻灯片向学生出示题目是个好办法。制作步骤与上面的操作类似。
1、输入词语加拼音。
2、用拼音指南加强版隐藏汉字。
3、在每个词语的各个汉字之间插入空格调整间距。
4、截取拼音图片到演示文稿。
5、插入文本框,以添加括号。
精选勾股定理应用教案(案例15篇)篇十
1、知识与技能目标。
能运用勾股定理及直角三角形的判定条件解决实际问题.2、能力达成目标。
(1)会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。(2)发展学生的分析问题能力和表达能力。
3、情感态度目标。
(1)在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利。
(2)积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。
(一)创设情景,引入新课;
(二)引入实例,体会勾股定在现实生活中的作用,体现数学来源于现实生活。
如放映的:可爱的小鸟、帮一帮消防员、电视的大小问题,这些都是现实生活中体现勾股定理应用的很好的例子。进而引入勾股定理的应用。
(三)实战濱示。
生活中路径最短问题转化为几何中的解直角三角形问题,即勾股定理的应用。先演示在长方体中,小蚂蚁吃农食物这个情境问题,在分析问题的过程中由学生讨论分析会出现几种情况,最后师生共同。
总结。
合作完成不但很好地应用了勾股定理而且还巩固了把几何体展开为平面图形的知识体现了数形结合的数学思想。
由绕一圈到两圈,最后提出问题:到多圈该怎么处理?学生课后自行讨论完成。给学生以自己思考的空间,体现不同的学生在数学上有不同的发展。
(七)练习,以上面的形式分层次出现。
(八)感悟与反思(让学生来小结本节课的内容):
1、通过这节课的学习活动你有哪些收获?
2、对这节课的学习,你还有什么想法吗?
(九)作业:见卷子。
(十)紧扣主题,观看给出的勾股定理的应用的图片,体会本节课的教学内容,以及勾股定理在现实生活中的具大作用。
精选勾股定理应用教案(案例15篇)篇十一
解:总差为17+10=27(块);。
分配之差为7-4=3(块);。
所以有少先队员27÷3=9(人)。
共有砖:4×9+17=53(块).
答:这个班少先队有9个人,要搬的砖共有53块。
考点:盈亏问题,一盈一亏。
解:第一次盈22人,第二次多出一个房间则是亏3+5=8(人);。
总差为22+8=30(人);。
两次分配之差为5人,
所以宿舍有30÷5=6(间),
新生共有3×6+22=40(人).
答:宿舍有6间,新生有40人。
考点:盈亏问题。
注意点:空出一个房间,则是少了8人入住,则是亏8人。
解:其中两人分4个,其余每人分2个,则多出4个“转化为”全家每人都分2个,
多出4+2×(4-2)=8个;。
一人分6个,其余每人分4个,则缺少12个“转化为”全家每人都分4个,
缺少12-(6-4)=10个;。
由盈亏问题基本公式可知:全家的人数有(8+10)÷(4-2)=9(人)。
买来橘子2×9+8=26(个)。
文档为doc格式。
精选勾股定理应用教案(案例15篇)篇十二
星期三上午第一节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
精选勾股定理应用教案(案例15篇)篇十三
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
【过程与方法】。
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
【情感、态度与价值观】。
体会事物之间的联系,感受几何的魅力。
【重点】勾股定理的逆定理及其证明。
【难点】勾股定理的逆定理的证明。
(一)导入新课。
复习勾股定理,分清其题设和结论。
提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。
出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。
(二)讲解新知。
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确。
出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。
精选勾股定理应用教案(案例15篇)篇十四
1。有一棵高的大树,一棵高的小树,两树之间相距,今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,至少飞了米。
2。冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米。
3。如图,台阶(都是直角)下端点b到上端点a的最短距离是()。
a8b15c17d25。
4。欲将一根长129cm的木棒放在长、高、宽分别是40cm、30cm、120cm的木箱中,能放得进去吗?请说明理由。
八。【课后作业】及时巩固、查漏补缺。
(1)试求该车从a点到b的平均速度;
(2)试说明该车是否超过限速().。
精选勾股定理应用教案(案例15篇)篇十五
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)。