教学工作计划是提高教学效果和教学质量的有效手段之一。以下是小编为大家收集的教学工作计划范文,仅供参考,希望能给大家提供一些教学思路和借鉴。
最新分数和整数相乘教案大全(15篇)篇一
1.复习分数乘整数的意义和计算方法。
2.复习求一个数是另一个数的几分之几。
1.操作活动。出示活动内容和小组活动要求。
(1)拿出纸条,先折出它的,再用涂色表示它的的长度。
(2)用尺量一量涂色部分的长度是多少厘米。
(3)想一想可以怎样列式来验证你的结果。
2.汇报。
(1)因为9÷12=,所以12×=9。
(2)根据汇报得到算式:16×=12、20×=15、24×=18。
(3)仔细观察这四个算式,各表示什么意义?
(4)这几个算式都有什么特点?
3.揭题:今天我们就来研究整数乘分数。
1.教学例1。
(1)出示例1。用线段图来表示数量关系。
(2)汇报、交流线段图。
(3)根据线段图列对应关系。
(4)要求所对应的具体量,就是求什么?
(5)列出算式。
(6)如何计算(写出过程,说明算理)。
2.:求一个数的几分之几用乘法计算。
3.教学例2。
(1)试列式。
(2)比较算式的区别。
(3)补充说明计算过程中能约分要先约分。
读书破万卷下笔如有神,以上就是为大家带来的4篇《《分数与整数相乘》教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
最新分数和整数相乘教案大全(15篇)篇二
授课课题分数除以整数。
教学基本。
教学。
目的。
和要。
求1、引导学生根据需要解决的实际问题,理解“把一个分数平均分成几份,求每份是多少”用除法计算的算理。
2、使学生经历探究分数除以整数的计算过程,掌握分数除以整数的计算方法。
3、培养学生观察、比较、分析推理和概括等思维能力。
教学重点。
及难点理解、掌握分数除以整数的计算法则,并能根据具体情况灵活地进行计算。
教学方法。
及手段使学生经历探索分数除以整数的计算方法和应用分数知识解决简单实际问题的过程,培养分析、比较、抽象、概括等能力,增强数感,发展数学思考。
学法指导探索、理解。
集体备课个性化修改。
预习例1。
一、引入新课。
上个单元,我们学习了分数乘法,今天开始,我们来学习分数除法。这节课我们先学习分数除以整数。
二、展开新课。
1、教学例1。
(1)出示例题,
(2)提问:量杯里有45升果汁,平均分给2个小朋友喝,怎样列式?为什。
么?(板书45÷2=)。
(4)提问学生:你是怎样想的?
当学生在阐述第一种思路时教师可以配合着画图进行说明。
教师提问:谁能再说一说,45除以2为什么可以用45×12来计算?12是2的什么数?(倒数)。
2、教学“试一试”。
(1)提问:如果45升果汁平均分给3个小朋友喝,每人喝多少升?怎样列式?(板书:45÷3)。
(2)45÷3怎么计算呢?能不能直接用分子除以整数算出得数?为什么?可以怎么算?
3.总结方法。
提问:你觉得分数除以整数,可以怎么算?怎样算比较方便?
教学环节设计三、巩固练习。
1、做“练一练”第1题。
2、做“练一练”第2题。
练习后问:分数除以整数,可以转化成分数乘法来计算,用这个分数与谁相乘?
3、做“练一练”第3题。
各自练习后,指名说一说,每一题是怎么想怎么算的。
4、做练习十一第2题。
提问:每组题有什么相同和不同的地方?计算时有什么不同?
四、小结。
作业。
板书。
设计。
分数除以整数,可以转化成分数乘法来计算。
执行。
情况。
与课。
后小。
结
周次7课次(本周第几课时)2。
授课课题整数除以分数。
教学基本。
内容。
教学。
目的。
和要。
求1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的试题。
2、使学生在探索整数除以分数计算方法的过程中,进一步理解分数除法的意义,体会数学知识之间的内在联系。
3、进一步感受数学学习的挑战性,体验成功的乐趣,培养学好数学的自信心。
教学重点。
及难点掌握整数除以分数的计算方法,能灵活地进行应用。
教学方法。
及手段。
使学生经历探索整数除以分数的计算方法和应用分数知识解决简单实际问题的过程,进一步培养分析、比较、归纳、类推能力,增强数感,发展数学思考。
学法指导分析、比较。
集体备课个性化修改。
预习例2、例3。
一、复习铺垫。
1、口算:
38÷345÷4。
95÷6413÷2。
2、揭题:整数除以分数。
二、教学新知。
教学。
环节。
设计。
追问:为什么用4÷2?
继续提问:如果每人吃1个,可以分给几个小朋友?
2、出示第(2)题。
问:解答这个问题,为什么也是用除法计算?
出示挂图,请根据图的意思想一想:可以怎样计算4÷?
把4个橙子每个分成一份,可分成几份?4÷是几?
板书:4÷=4×2。
看到这个等式,你能想到什么?
3、出示第(3)题。
(1)提问:你能在图中分一分,再想出计算结果吗?
(2)出示:4÷=4×()。
4÷=4×()。
提问:从这两个式子中,你又想到了什么?
1、出示例3。
2、教师要求学生请根据每米剪一段,在图上分一分,看看结果是多少。
3、想一想:4÷可以怎么算,为什么?
板书:4÷=4×=6。
4、归纳和总结:想一想,整数除以分数可以怎么算?
三、巩固练习。
四、小结。
作业。
板书。
设计。
把分数除法转化成分数乘法后,能约分的可以先约分,再计算。
执行。
情况。
与课。
后小。
结
最新分数和整数相乘教案大全(15篇)篇三
教学内容:
苏教版教材数学第十一册第三单元第一课时。(教材38页的例1,39页的练一练,43页练习八的第1~5题。)。
教学目标:
1.联系整数和小数乘法的意义,在具体情境中帮助学生理解分数与整数相乘的意义,并在探究的过程中理解分数乘整数的算理,掌握算法。
2.增强学生运用已有知识和经验探索并解决问题的过程,体验探索学习的乐趣。
教学重点:
教学难点:
教学准备:
多媒体课件。
教学过程:
一.复习激欲。
1.计算:
+=++=。
学生口答,并说说计算过程。
2.问:还记得下面两个算式表示的意义吗?板书:
5×4。
0.8×6。
学生口答。
二探究新课。
1.感悟意义。
(1)课件出示:做一朵绸花用米绸带。
问:米怎么画图表示?学生回答,教师结合学生回答课件演示:。
米
1米。
(2)出示:小芳做3朵这样的绸花,一共用几分之几米绸带?。
问:你能在图中接着涂出3朵绸花的长度吗?
学生独立在课本上涂色,教师巡视指导。
学生涂完后,教师课件演示,学生跟着说出每一步演示的结果和表示的意义。
米米米。
1米。
(3)演示后问:请同学们观察图形思考,解决这个问题可以怎样列式?
根据学生的回答完善板书:
×3。
比较两个算式,追问:你知道×3表示什么意思了吗?
3.探索算法。
观察,思考,交流,汇报。(给足时间)。
(2)汇报后,进一步追问:你觉得×3应该怎样算?
学生再次思考,交流,汇报,板书。
4.解决例题2。
(1)课件出示:小华做5朵这样的绸花,一共用几分之几米绸带?
问:还能在图中涂色表示出做5朵绸花所用的绸带吗?不够涂还可以怎么解决这个问题?(列式计算。)。
可以怎样列式?表示什么意思?
(2)激情:你能利用刚才学到的计算方法独立列式解答这题吗?指名板演。
(3)结合学生板演,强调书写格式和约分过程。(也可以课件演示。)。
三.练习。
1.独立做“练一练”第一题.边涂边思考:在涂色的过程中,分数的什么在变化,什么不变?指名回答后,用课件边演示边讲解分子变,分母不变的过程。
2.小结。
今天学习的算式有什么特点?板书:分数与整数相乘。都可以表示什么意思?与整数乘整数和小数乘整数相同吗?会计算了吗?下面一起来做几题。
3.做“练一练”第二题。
独立计算,指名板演。
五..错题医院:下列计算正确吗?不对的请改正过来。
111。
2
六..生活与运用。
在我们的生活中,有分数与整数相乘的计算吗?
问:一节课用分数表示是多少小时?那么一天六节课一共是多少小时?课件演示。
七.延伸。
最新分数和整数相乘教案大全(15篇)篇四
教学基本。
内容第80页的例1、“练一练”,练习十五第1-5题。
教学。
目的。
和要。
求1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2、使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3、使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点。
及难点分数四则混合运算的顺序及理解整数运算律在分数运算中同样适用。
理解整数运算律在分数运算中同样适用。
教学方法。
及手段本课设计从学生已有的经验入手,利用推移、类比的方法,通过学生自己的尝试、观察发现规律。
学法指导。
尝试与教师一同解决问题,积极思考。
集体备课个性化修改。
教学。
环节。
设计。
一、创设情境。
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2、集体交流。教师根据学生的回答板书算式。
25×18+35×18(25+35)×18。
追问:列式时你是怎么想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)。
二、教学分数四则混合运算的运算顺序。
你会计算上面这两道式题吗?
学生分别计算,并指名板演。
3、小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
4、做“练一练”第1题。让学生先说出运算顺序再计算,然后交流、订。
正。
三、教学把整数的运算律推广到分数。
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2、做“练一练”第2题。先让学生独立计算,再讨论分别应用了什么运算律或运算性质?
作
业1、做练习十第1题。
让学生按要求直接写出得数,再集体订正。
2、做练习十第2题。
让学生独立计算,再选择一两题要求说说运算顺序。
3、做练习十第3题。
让学生独立计算,然后说说每道题分别应用了什么运算律或运算性质。
4、做练习十第4、5题。
学生独立解答后,指名说说解题思路。
板书设。
计
执行。
情况。
与课。
后小。
结
最新分数和整数相乘教案大全(15篇)篇五
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
最新分数和整数相乘教案大全(15篇)篇六
(概括:整数乘法表示求几个相同加数的和的简便运算)。
(二)计算下面各题,说说怎样算?
++=++=。
同学之间交流想法:++==3××3=。
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=。
二、自主探索。
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、交流、质疑。
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)。
方法2:×3=++====(块)。
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.。
区别:一种方法是加法,另一种方法是乘法.。
教师板书:++=×3。
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.。
(五)提示:为计算方便,能约分的要先约分,然后再乘.。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.。
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变。
五、巩固、发展。
(一)巩固意义。
1.改写算式。
+++=()×()。
+++++++=()×()。
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则。
1.计算(说一说怎样算)。
×4×6×21×4×8。
思考:为什么先约分再相乘比较简便?
2.应用题。
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至。
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画。
配上镜框,需要木条多少米?
(三)对比练习。
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业。
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)。
用乘法算:×3=++====(块)。
答:3人一共吃了块.。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。
最新分数和整数相乘教案大全(15篇)篇七
1.算一算。
37×2=()211×5=()。
2.填一填。
(1)18+18+18+18+18=()×()=()。
(2)27×4=()+()+()+()=()。
(3)311+311+311=()×()=。
3.算一算。
27×25×32018×4。
916×247×821310×15。
4.一杯牛奶的.质量是34千克,5杯牛奶的质量是多少千克?
6.一根钢管锯成2段需要分钟,如果锯成11段,那么需要多少分钟?
最新分数和整数相乘教案大全(15篇)篇八
2、促使学生加深对相关数量关系的理解,提高解决简单实际问题的能力教学重点难点:使学生理解求一个数的几分之几是多少可以用乘法来计算教学资源:例2的图、小黑板教学过程:
4、小结:求一个数的几分之几是多少,可以用乘法计算。
1、练习八第6题先让学生独立解答后再交流,比较,教案分数与整数相乘,教案《教案分数与整数相乘》。
体会到:求一个数的几分之几是多少与求几个相同数连加的和,都可以用乘法来计算。
2、练习八第7题学生先独立计算再交流。
3、练习八第8题学生独立解答并说说是怎样思考的。
4、练习八第9题先理解:表中的分数都是与四月份的天数比较后得到的,都以“30天”作为单位“1”。估计天数的多少,可以直接比较分数几个分数的大小。将计算结果与估计结果进行比较,看估计是否正确。
5、练习八第10题先让学生看图计算,再组织学生说说三个问题有什么相同的地方。
最新分数和整数相乘教案大全(15篇)篇九
教学目标:
1、知识目标:
使学生理解分数乘以整数的意义与整数乘法相同。
2、能力目标:掌握分数乘以整数的计算法则,能够正确地进行计算。
3、创新目标:使学生学会用不同的方法解决同一个问题。
4、德育目标:培养学生的讨论意识和交流意识。
教学重点:本节的教学重点是使学生理解分数乘以整数意义,因此在教学中应注重让学生通过讨论发现并总结计算出方法并能正确运用先约分再相乘的方法进行计算。
教学难点:能正确运用先约分再相乘的`方法进行计算。
教具准备:一个大西瓜。通过切西瓜的实物演示,帮助学生理解分数乘以整数的意义与整数乘法的意义完全相同。
教学过程:
一、导引目标。
1、复习:整数乘法的意义是什么。
2、思考:你能很快计算出下面算式的结果吗?
+++++++++=。
3、组织研究。
(1)通过以上的观察和计算,你发现了什么?
(2)小组之间合作交流,自学例1。
二、创设条件。
(一)指名到台上,按要求切西瓜。
1、将西瓜平均分成两份。问:
(1)两份合在一起,一共是几块?
(2)怎样列式计算?
+===1。
×2===1。
2、将西瓜平均分成四份。问:
(1)四份合在一起,一共是几块?
(2)怎样列式计算?
+++===1。
×4===1。
3、将西瓜平均分成八份。问:
(1)八份合在一起,一共是几块?
(2)怎样列式计算?
+++===1。
×8===1。
三、引导创新。
计算×3=思考可以有几种计算方法,哪一种更简便一些?
四、反思小结。
1、独立完成第2页的做一做。
谈谈自己本节课的收获,还有哪些知识没学明白。
最新分数和整数相乘教案大全(15篇)篇十
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
同学之间交流想法: + + = = 3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = = (块)
方法2: ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3人一共吃了 块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
最新分数和整数相乘教案大全(15篇)篇十一
:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的.计算法则,并能正确运用“先约分再相乘”的方法进行计算。
1、5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:12×5。
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)。
用乘法算:(块)。
问:这里为什么用乘法?乘数表示什么意思?
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)。
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。
1.第2页做一做。
2.练习一。
最新分数和整数相乘教案大全(15篇)篇十二
“分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理,真正做到了算理与算法相结合。
基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。
如上述案例中,关注学生转化的思想就是本课时教学的重中之重.数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的.。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。
今天这节课的算理看似简单,其实理解还是有困难的.根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理.因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。
数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。
课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。
最新分数和整数相乘教案大全(15篇)篇十三
1、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的`思维。
1、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
一、铺垫孕伏。
(一)出示复习题。
1、口答:
5个12的和是多少?
10个23的和是多少?
4个0。5的和是多少?
2、整数乘法的意义是什么?
3、计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)。
二、探究新知。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
指名读题。
1、分析演示:
每人吃个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了个,三个人吃了几个个?使学生从图中看到三个人吃了3个个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:++===(个),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)。
2、观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
3、比较和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
4、概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)。
最新分数和整数相乘教案大全(15篇)篇十四
一、复习铺垫,设疑激趣,引出新知。
由于学生已学过了同分母分数的加减法和整数乘法,具有一定的知识准备,以此作为新知的“生长点”。让学生复习整数乘法以及同分母分数加减法的计算,为学习新课做好铺垫,调动学生的知识储备。灵活设计,把例1转成生活中的数学,让学生帮小新解决这个问题。这富有挑战性的有趣味性问题,激起学生自主探究的欲望。此时学生处于“口欲言而不能,心求通而末达”的状态,为学习新课做好积极的心理准备。
二、自主探究,积极构建,解决问题。
知识不能靠传递,而要靠学习者在原有知识经验的基础上积极建构。根据学生的猜测,动手计算,就会出现两种算法,一种是加法,一种是乘法,引导比较两个算式结构上有什么特点?有什么关系?力求让学生自己去感悟分数乘整数的意义。并通过ppt的展示,生动地把加法和乘法联系起来,让学生学会分数乘整数的计算法则。利用知识的迁移,通过观察、思考、讨论、交流、质疑等数学活动抓住重点突破难点。
我适时鼓励学生尝试解答分数乘整数,引导学生在独立思考的基础上,合作交流,学会倾听,学会反思,学会表达。汇报自己的想法和算法,鼓励学生用自己喜欢的方法,再去计算。并讨论是怎样算的,无形中引导学生用自己的话概括出了分数乘整数的计算法则,渗透不完全归纳法,培养学生合情的推理能力。
三、边学边练,注重应用,巩固掌握。
本课教学针对重点、难点,完成相应的练习,边学边练,及时巩固强化认识,注重落实知识的应用,培养学生的应用意识和能力。同时练习注意层次的安排,最后我安排三个层次的练习:
(1)巩固意义,看图列式,多说分数乘整数的意义。
(2)多练习计算强化对法则的应用和理解。
(3)对比练习。兼顾到学习成绩比较好的`同学,设计一些比较有挑战性的问题。
作业布置:练习一:第3、4、5、题。
最新分数和整数相乘教案大全(15篇)篇十五
《分数与整数相乘》这是学生首次接触分数乘法。分数与整相乘在运算意义上与整数乘法一致,因而算法是教学的重点。
《课程标准》强调从学生的熟悉的生活经验和学习经验,让数学学习成为学生“生动活泼、主动发展和富有个性的过程”,本课重视了让学生成为学习的主人,积极主动地探究学习新知,体验成功的快乐!
我认为教者以下几点做得比较好:
1、结合现实的问题情境,引导学生理解分数乘法的意义。计算课是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设了班里同学为教师节做装饰花的实际情境,引导学生明白分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3/10×3的结果。
2、借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?这样做能够很好的突出重点,突破难点,要让学生不仅知其然,更重要的是知其所以然。教材的例题侧重体现加法和乘法之间的转化,板书对照清楚明晰,学生很容易发现乘的计算方法,。
3、练习设计具有针对性,多样性,激励性,生活性。在本环节学生的技能得到了巩固和提升,特别是两个常见的改错题引发学生自我反思、自我完善计算方法,已达到算法的自主优化。