教学计划的编写需要多方面的考虑,包括学科知识的重要性、难易程度、学生的学习兴趣等。下面是一些编写教学计划的常见问题和解决方法,希望对大家有所启发。
精选人教版六年级数学比例教学设计(案例14篇)篇一
教学内容:课本89页例1、例2、做一做、练习二第1、2题。教学目标:
1、让学生在已有的分数加法的基础上,通过小组合作,自主探究建构,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。
3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。教学重点:让学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:总结分数乘整数的计算方法。教学过程:
一、创设情境,提出学习目标。
1、创设情境:同学们,谁敢与老师比一比,看谁列式列得比较快?
比赛题目为:3个3/10相加的和是多少?6个3/10相加的和是多少?
师:同学们的表现真是太棒了?这节课我们就一起来研究有关《分数乘整数》的数学问题?
第1页/共5页2、提出学习目标。
让学生先说一说,再出示学习目标:(1)分数乘整数的计算方法。
学生独立自学课本89页例1、例2,完成做一做(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)2、全班展示(1)算法展示。
生1:利用乘法与加法的关系进行计算。2/154=2/15+2/15+2/15+2/15=8/15生2:先计算出结果,再进行约分。5/128=58/12=40/12=10/3=生3:在计算过程中能约分的先约分,再计算。23/4=3/22与4先约分,再计算。(2)比较三种计算方法,选择最优算法。
通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。(3)错例展示:
错例1:学生把整数与分子进行约分。错例2:学生没把计。
第2页/共5页算结果约成最简分数。
3、学生质疑问难,激发知识冲突。
(1)针对同学的展示,学生自由质疑问难。
(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?4、引导归纳分数乘整数的计算法则。
1、完成课本12页练习二第1、2题。2、生活中的数学。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一。
第3页/共5页换。要求学生抽空抄录并且阅读成诵。其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。如此下去,除假期外,一年便可以积累40多则材料。如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。2、智力冲浪:用12个边长都是dm的正方形硬纸板可以拼成多少种形状不同的长方形?它们周长分别是多少?(a类同学做)。
第4页/共5页习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。
第5页/共5页。
精选人教版六年级数学比例教学设计(案例14篇)篇二
教学目标:
1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。
2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。
3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。
教学过程:
一、谈话导入。
1.出示苹果、梨、橘子的图片问:起一个总的名称是什么?
2.出示:仿照第一题填空。
(1)时间:3小时20分2小时45分。
(2)总价:5元()()。
(3)():6千克800克3吨350克。
填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?
二、学习新课。
(一)相关联的量。
教师做实验,向弹簧称上加钩码问:
(1)这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?
指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。
追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?
1、出示19页表格。
观察图像,填表,回答下面的问题:
(1)表中有哪两个相关联的量?
(2)正方形的周长是怎样随着边长的变化而变化的?
(3)正方形的面积是怎样随着边长的变化而变化的?
(4)它们的变化规律相同吗?
小组讨论交流汇报。
2、20页第2题。
(1)例1和例2有什么共同点?(两种相关联的量,比值一定)。
师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。
问:现在你知道什么叫成正比例的量了吗?自由说说指生回答阅读课本。
师板书关系式:y/x=k(一定)。
(2)那么,要判断两种量是否成正比例的量该看什么呢?
三、巩固提高:19页说一说。
四、全课小结。
精选人教版六年级数学比例教学设计(案例14篇)篇三
教学目标:
1、使学生理解什么是相关联的量。
2、掌握正比例的意义及字母表达式。
3、学会判断两个量是否成正比例关系。
教学过程:
一、导入。
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……。
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)。
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)。
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。
1、表中有()和()两种量。
2、路程是怎样随着时间的变化而变化的?
3、任意写出三个相对应的路程和时间的比,并算出它们的比值。
4、比值实际上表示(),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)。
(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。
精选人教版六年级数学比例教学设计(案例14篇)篇四
教学目:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
认识正比例的意义
:掌握成正比例量的变化规律及其特征
:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。
1、说出下列每组数量之间的关系。
(1)速度时间路程
(2)单价数量总价
(3)工作效率工作时间工作总量
2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充
说说表中列出了哪两种量。
(1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)
(2)引导学生观察表中数据,寻找两种量的变化规律。
根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。
根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?
根据学生的回答,板书关系式:路程/时间=速度(一定)
(板书:路程和时间成正比例)
2、教学“试一试”
学生填表后观察表中数据,依次讨论表下的4个问题。
根据学生的讨论发言,作适当的板书
3、抽象表达正比例的意义
根据学生的回答,板书:=k(一定)
揭示板书课题。
先观察思考,再同桌说说
大组讨论、交流
学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。
学生根据板书完整地说一说表中路程和时间成什么关系
学生独立填表
完整说说铅笔的总价和数量成什么关系
学生概括
1、练一练
生产零件的数量和时间成正比例吗?为什么?
2、练习十三第1题
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第2题
先独立判断,再有条理地说明判断的理由。
4、练习十三第3题
先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。
分别求出每个图形的周长和面积,并填写表格。
讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。
讨论、交流
独立完成,集体评讲
说明判断的理由
说一说,画一画
填一填,议一议
讨论
这节课你学会了什么?你有哪些收获?还有哪些疑问?
精选人教版六年级数学比例教学设计(案例14篇)篇五
1、使学生认识正比例关系的意义,理解,掌握成正比例量的'变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。
1、说出下列每组数量之间的关系。
(1)速度时间路程。
(2)单价数量总价。
(3)工作效率工作时间工作总量。
2、引入新课。
我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。
1、教学例1。
出示例1。让学生计算,在课本上填表。
让学生观察表里两种量变化的数据,思考。
(1)表里有哪两种数量,这两种数量是怎样变化的?
(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?
引导学生进行讨论。
提问:这里比值50是什么数量?(谁能说出它的数量关系式?)。
想一想,这个式子表示的是什么意思?
2、教学例2。
出示例2和想一想。
要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。
比值1.6是什么数量,你能用数量关系式表示出来吗?
谁来说说这个式子表示的意思?
3、概括正比例的意义。
像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。
4、具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?
例2里的两种量是不是成正比例的量?为什么?
(2)做练习八第1题。
5、教学例3。
出示例3,让学生思考/。
提问:怎样判断是不是成正比例?
请同学们看一看例3,书上怎样判断的,我们说得对不对。
强调:关键是列出关系式,看是不是比值一定。
1、做练一练第1题。
指名学生口答,说明理由。
2、做练一练第2题。
指名口答,并要求说明理由。
3、做练习八第2题(小黑板)。
让学生把成正比例关系的先勾出来。
指名口答,选择几题让学生说一说怎样想的?
精选人教版六年级数学比例教学设计(案例14篇)篇六
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教具:小黑板小黑板。
学具:作业本,数学书。
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
住户张家赵家。
水费(元)1520。
用水量(吨)68。
(2)揭示课题。
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
1.教学例1。
用小黑板在刚才准备题的表格中增加几列数据,变成下表。
住户张家赵家李家周家刘家吴家。
水费(元)1520352517.5。
用水量(吨)6814109。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联。
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
水费用水量=156=208=3514=……=2.5。
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:水费用水量=每吨水单价(一定)。
2.教学“试一试”
教师:我们再来研究一个问题。
小黑板出示第52页下面的“试一试”。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80m,它们之间的关系可以写成路程时间=速度(一定)。
3.教学“议一议”
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动。
教师:请大家说一说生活中还有哪些是成正比例的量。
(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
精选人教版六年级数学比例教学设计(案例14篇)篇七
1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
能认识正比例关系的图像。
利用正比例关系的图像解决实际问题。
1、判断下面两种量能否成正比例,并说明理由。
1.数量一定,总价和单价。
2.和一定,一个加数和另一个加数。
3.比值一定,比的前项和后项。
1、出示例1的表格。
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像。
3、展示、纠错。
每个点都应该表示路程和时间的一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
1.学生到黑板上示范。
2.互相评价纠错。
3.学生讨论。
说说是怎样想的。
1、完成练一练。
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题。
先看一看、想一想,再组织讨论和交流。
要求学生说出估计的思考过程。
3、练习十三第5题。
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流。
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
独立完成,集体评讲。
想一想,说一说。
画一画,议一议。
学生设计,交换检查并相互评价。
这节课你学会了什么?你有哪些收获?还有哪些疑问?
精选人教版六年级数学比例教学设计(案例14篇)篇八
教学目的和要求。
1、使学生进一步掌握“按比例分配问题”的解题方法。
2、进一步巩固比的知识,沟通比和分数、除法的关系。
3、在解决问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性。
教学重点。
及难点会正确计算“按比例分配问题”的简单问题。
运用数学知识灵活解决实际问题。
教学方法。
及手段使学生在活动中进一步积累解决问题的经验。
学法指导。
集体备课。
预习教学。
环节设计。
一、基本练习。
1、知识回顾与整理。
前几节课,你学会了哪些知识?
2、完成练习十四第5题。
3、完成练习十四第6题。
4、完成练习十四第7题。
二、综合练习。
1、完成练习十四第8题。
2、完成练习十四第9题。
反馈时,引导学生理解:客车与货车所行路程的差是40千米。
精选人教版六年级数学比例教学设计(案例14篇)篇九
2.掌握按比例分配应用题的特征及解题方法.。
3.培养学生应用所学知识解决实际问题的能力.。
教学重点。
掌握按比例分配应用题的特征及解题方法.。
教学难点。
按比例分配应用题的实际应用.。
教学过程。
一、复习引入。
(一)填空。
已知六年级1班男生人数和女生人数的比是3∶2.。
1.男生人数是女生人数的()。
2.女生人数是男生人数的`(),女生人数和男生人数的比是().。
3.男生人数占全班人数的(),男生人数和全班人数的比是().。
4.全班人数是男生人数的(),全班人数和男生人数的比是().。
5.女生人数占全班人数的(),女生人数和全班人数的比是().。
6.全班人数是女生人数的(),全班人数和女生人数的比是().。
(二)口答应用题。
1.学生口答:1002=50(平方米)。
2.教师提问。
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)。
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
3.谈话引入。
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题.(板书:分配)。
二、讲授新课。
(一)把复习题2增加条件如果按3∶2分配,两个班的保洁区各是多少平方米?
(二)教师提问。
1.分谁?(100平方米)。
2.怎么分?(按3∶2分)。
3.求的是什么?(两个班的保洁区各是多少平方米?)。
(三)思考:由如果按3∶2分配这句话你可以联想到什么?
精选人教版六年级数学比例教学设计(案例14篇)篇十
本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。
教学课题:《反比例》。
教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。
知识与技能:
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。过程与方法:
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
情感、态度与价值观:
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲。
解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法。
进行学习,必要时进行合作交流。
一课时。
生思考回答:在地图上。
师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识?生:图形的放缩。
生:长方形。
师:那我们来估一估它的长和宽吧!
(生:长大约9米,宽大约6米。)。
师:请大家在练习本上画出教室的平面图。(生画师巡视)。
学生动手操作,反馈。
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
生:可以利用前面所学的知识——图形的放缩,把教室的长和宽都缩小一定的倍数在纸上表示出来。
师:你的想法很对,跟笑笑同学的想法一样。
师板书学生结果:逐步引出1:100。
1、学生汇报。
2、学生讨论:
学生:图上1厘米长的线段表示实际100厘米。
3、引出课题。
教师:这就是今天要学习的新知识——比例尺(板书课题)。
1、介绍各种比例尺的名称。
师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。
2、认识比例尺的意义。
师:比例尺1:500是什么意思?
生1:就是图上1厘米的长度代表现实中的500厘米。
生2:实际距离是图上距离的500倍。
1生3:图上距离是实际距离的。500。
师:比例尺1:2200000是什么意思?
生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。
师:同学们讲得都对,那到底什么是比例尺?
学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际。
距离的比。
小结比例尺的特点及应注意的问题.
学生独立做,集体反馈。
练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米?0204060千米。
练习3、4略。
2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?
指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。
3、再次认识比例尺。
3求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。
比例尺把实际距离缩小一定的倍数如1:30000000。
把实际距离扩大一定的倍数如200:1。
5引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?
补充板书:
把实际距离按原来的大小画出来,比例尺就是1:1。
通过本节课的学习,你有哪些收获?
请大家把书翻到30页,量一量平面图中笑笑卧室的长是___厘米,宽是___厘米。算一算笑笑卧室实际的长是___米,宽是___米,面积是___平方米。
精选人教版六年级数学比例教学设计(案例14篇)篇十一
【教材简析】。
这部分内容是学生在学习了比的意义、比的基本性质的基础上进行的。按比例分配在日常生活和生产中有着广泛的应用,掌握这部分知识对学生今后的学习解决问题具有重要的意义。
【教学目标】。
根据小学生以具体形象思维为主的特点和学生已有的认知水平,我制定了以下教学目标:
1)知识目标:结合具体事例,经历解决简单按比例分配的过程。
2)能力目标:理解按比例分配的含义,会解答已知比例和总量,求部分量的简单按比例分配问题。
3)情感目标:让学生在劳动实践中多观察与数学结合的实例,鼓励学生用数学知识解决生活中的真实问题,使学生感到劳动的价值,并培养学生热爱劳动、热爱生活的良好品质。
【设计理念】。
学校劳动技术教育是终身教育的基础,学生的劳动兴趣和习惯也是在学校劳动技术教育中养成的。因此,在掌握劳动技能,增强体质的同时,激发和培养学生的学习兴趣也是非常重要的,让学生在劳动中学习,不仅是一种让学生更好地掌握知识的教学方式,还能为提高学生的生存能力奠定良好的基础。劳动技术教育与数学的整合让学生体会到生活中处处有数学,数学来源于生活,又服务与生活,数学只有运用于生活才能显现出他的价值和作用。
【教学准备】。
多媒体课件、米尺。
【教学过程】。
(一)复习旧知,注重铺垫:
师:我们以前已经学过了比的意义和比的基本性质,现在老师检查一下同学们掌握的情况。请看大屏幕,读题,并说出结果。(课件出示练习题)。
(设计意图:深刻把握知识发展的脉络,把解答按比例分配应用题用到的旧知识分成几个知识点,复习了比和归一、分数应用题知识,为知识的迁移创造了条件,使学生更好地参与到学习新知识当中去。)。
(二)创设情境,引入新课:
生1:我们的教学楼很气派,教室也很宽敞。
生2:我们的校园很整洁,也很美丽。
生3:我们学校的长廊很漂亮,很壮观,我很喜欢。
生4:在这样的学校上学我很高兴。
生:这是我校操场西南侧的一块荒地。
师:对,这块荒地在今年五月份已经成为了我校的劳动实验基地,看到它,你想到了什么?
生1:如果将这块荒地种上蔬菜、花草,会使我们的校园变得更加美丽。
生2:还会陶冶我们的情操。
找同学读题目,你得到了哪些信息?
生1:已知这块地的总面积是240平方米,按3:5种上了茄子和西红柿。
生2:问题是茄子和西红柿各种多少平方米?
师:小组交流一下,按3:5种上了茄子和西红柿是什么意思?。
学生讨论。
学生汇报:
生1:就是把240平方米平均分成8份,其中3份种茄子,5份种西红柿。
生2:茄子的种植面积占这块地的3/8,西红柿占这块地的5/8。
师:同学们分析的非常正确,我们把这种分配方法叫做按比例分配。(板书:按比例分配)那怎样计算呢?请同学们在练习本上解答。
找两名学生把解题过程写在黑板上,并说一说自己的解题思路。
1)3+5=8份。
种茄子的面积:240÷8×3=90(平方米)。
种西红柿的面积:240÷8×5=150(平方米)。
2)3+5=8。
种茄子的面积:240×3/8=90(平方米)。
种西红柿的面积:240×5/8=150(平方米)。
生1:我是用份数思考的,这块地平均分成了8份,用240÷8=30(平方米)求出了一份的面积,再用一份的面积乘3就是茄子的面积,一份的面积乘5就是西红柿的面积。
师:他的这种做法可以吗?
生:可以。
师:第二名同学解释一下。
生2:我是把比转化为分数,再用乘法求一个数的几分之几是多少?,这块地平均分成了8份,茄子的种植面积占这块地的3/8,用240×3/8=90(平方米);西红柿占这块地的5/8,用240×5/8=150(平方米)。
师:这种方法好不好?
生:好。(掌声)。
师:我们怎样检验一下做的对不对呢?
生:可以把90:150化简,看看是不是得3:5。
师:同学们检验的方法真好,我们要养成做完题后会检验的好习惯。
教师总结:简单的按比例分配的`问题一般有几种解法?
生:两种。第一种方法:用整数除法、乘法来解决问题。第二种方法:用分数乘法解决问题,就是求一个数的几分之几是多少。
(设计意图:合理的创设出一些贴近学生生活实际的问题情境,把生活中的实际问题抽象成有兴趣的数学问题,能引起学生的兴趣,增加学生的求知欲,学生就会主动的去开启智慧之门。交流环节的设计主要是为了让学生掌握自己方法的同时,可以接触其他同学的解题方法,一举两得。)。
(三)劳动尝试,解决问题:
师:我们的劳动基地还剩下一块,学校计划让学生来管理,同学们有信心管理好吗?今天我们就来解决管理这块实验基地的第一个问题,请看例2(课件出示):如果我们将这块地按2:5:3种上牡丹、月季和菊花,我们应该怎样确定他们的位置呢?找同学读题。
师:你得到了哪些信息?
生1:要按2:5:3种上牡丹、月季和菊花。
生2:让我们确定每种花的位置。
师:同学们能解决吗?小组交流讨论一下,应按怎样的步骤来进行。
学生交流讨论,然后汇报。分3步进行:
生:1)测量出这块地的长。
2)用按比例分配的方法分别计算出2份、5份、3份的长度。
3)利用计算出的数据进行划分,就能确定出每种花的位置。
师:同学们听清楚了吗?这样做可以吗?
那我们就去劳动实验基地进行实际划分一下。学生分成五组,一二组测量这块地的长;三四组用按比例分配的方法分别计算出2份、5份、3份的长度;五组利用计算出的数据进行划分,确定出每种花的具体位置。小组合作,人人动手。
学生去试验基地进行实际划分。
最后总结。
每组学生汇报结果。
生1:我们测量的长是60米。第二组同学同意。
生2:我们的计算过程是。
2+5+3=10。
60÷10=6(米)6×2=12(米)6×5=30(米)6×3=18(米)。
生3:我们的计算过程是2+3+5=1060×2/10=12(米)60×5/10=30(米)60×3/10=18(米)。
生4:我们把两个长都从南边开始量出12米、30米都做了个记号,然后再把相对的点连接起来,就能划分出三种花的位置了。
师:看来每组同学都已经胜利的完成了任务,同学们真了不起。
(设计意图:数学与劳动技术教育相结合,是在新的历史条件下,全面实施素质教育的重要组成部分,是一项提高学生综合素质的教育活动。学生不仅学会了数学知识,还掌握了一些基本的劳动技能。)。
(四)巩固练习。
1、基础练习。
回到教室。
师:接下来我们再看两道题,你会做吗?(课件出示)自己读题,并解答出来。
订正答案。
2、综合实践:
课外作业:设计一份500克的水果沙拉,并把各种水果的比以及计算出的重量结果填写在表格当中。
(设计意图:这样的练习设计有层次,有坡度,体现由浅入深的认识规律,将知识引入生活,有利于对学生劳动技术能力的培养,和用数学的眼光看问题、解决问题,培养了他们的创造力。)。
(五)课堂小结:
学完这节课你有什么收获?
生1:我学会了按比例分配的问题有两种解法。
生2:我学会了用按比例分配的方法进行实际划分,确定位置。
生3:我不仅学会了按比例分配的知识,还会实际运用了,我非常高兴。
师:看来同学们这节课的收获都很不少,今后我们还会对这块实验基地进行预算,进行实际种植,同学们有信心吗?这节课就到这。
精选人教版六年级数学比例教学设计(案例14篇)篇十二
1、结合具体情境,通过计算,能说出比例的意义,能应用比例的意义判断两个比能否构成比例。
2、通过观察、比较、小组讨论说出比和比例的区别。
3、探索国旗中蕴含的数学知识,渗透爱国主义教育。
教学过程:
一、复习旧知。
1、回顾什么叫做比?什么叫做比值?怎样求比值?(指名口答)。
2、出示求比值的练习,学生独立完成,并发现其中两个比的比值相等。
二、情景导入。
1、师:同学们,你们已经在胜利小学度过了六年的美好时光,在即将毕业之际,老师想放大一张咱们同台表演的照片作为纪念,却出现了这三种情况(课件出示三张师生同台表演的照片,其中两张照片变形了,另一张照片按比例放大)说说你的看法。
三、探究新知。
1、出示按比例放大的两张照片的长和宽的数据,说出长和宽的比,明确按比例缩放的照片场合宽的比相等。
2、多媒体出示三面国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
师:这些形状相同,大小各异的国旗,是不是隐含着什么共同点呢?你能写出它们长和宽的比并求出比值吗?(指名板演)。
3、通过计算你发现了什么?(指名口答)。
5、打开书找到比例的意义,并多几遍。
6、在这三面国旗的长和宽的数据中,还有哪些数据能组成比例,自己试着写一写。(生写比例,师巡视)。指名汇报写出的比例。
四、课堂练习。
1、判断哪些是比例?
指名判断,并说明理由,明确比和比例的区别与联系。
2、教材40页做一做的第一题。
先独立完成再集体订正,明确如何判断两个比是否能组成比例就是计算它们的比值,看看是否相等。
3、教材40页做一做第二题。
以小组为单位汇报写出的比例。
4、教材43页练习八第一题。
明确什么是相对应的两个量,并写出能组成的比例。
5、写出比值是4的两个比并组成比例,写出比值是0、25的两个比并组成比例。
小组比赛哪个小组写得多。
五、课外拓展。
介绍黄金比例。
六、作业。
练习八第二题、第三题。
七、课堂小结。
总结本节课的收获。
精选人教版六年级数学比例教学设计(案例14篇)篇十三
教学目标:
理解按比例分配的意义,掌握按比例分配应用题的结构特征以及解题方法,
能正确解答按比例分配应用题。培养学生应用知识解决实际问题的能力。
过程与方法。
经历应用知识的过程,体验数学知识的应用价值。
情感态度与价值观。
让学生感悟数学与日常生活的联系,激发学生学习数学的兴趣,
体验数学知识的应用价值。
教学重点:
理解按比分的意义,学会运用不同的方法解决按比分配的问题。
教学难点:
正确分析数量关系,灵活解决按比分配的实际问题。
教学准备:
多媒体课件。
一、热身练习。
1、修一段路,已经修的米数与剩下的米数的比是4∶5,可以把已修的米数看作()份,剩下的就有()份。这段路共有()份已经修的是剩下的(),剩下的是已修的,已经修的占这段路的()剩下的占这段路的()。
二、新课探究。
1、学生读题,找出不理解的语句,老师解释(浓缩液稀释液)。
2、找出已知条件:500ml1:4。
(1)师:500是什么?(浓缩液体积和水的体积之和)。
3、学生尝试解题。
4、汇报。
方法二、总份数:1+4=5浓缩液:500×=100ml水:500×=400ml。
5、师评讲,小结方法。
(二)做一做。
1、如果有140个橘子,按3︰2的比分给两个班,应该怎样分?
(三)师生总结。
这些都是“按比例分配”的问题。分配问题的一般思考步骤是:分什么?有多少?怎样分?
精选人教版六年级数学比例教学设计(案例14篇)篇十四
1.使学生在具体情景中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。
2.使学生感受数学知识的内容联系,学会综合运用所学知识,增强分析问题和解决问题的能力。
:在具体情境中理解比例的意义。
运用比例的意义判断两个比能否组成比例,并能正确组成比例。
教学课件。
(一)复习旧知识导入新课。
同学们,我们已经学了有关比的知识,请大家回忆一下什么叫比?什么叫比值?比的基本性质是什么?看来,同学们对比的知识掌握的不错。今天我们一起来学习与比有关的知识,比例的意义。
(二)探究新知识
1.初步理解比例的意义。
请同学们看一组图片,依次出现三面国旗课件。让学生分别说出都是什么地方的国旗?
请仔细观察这三面国旗有哪些相同的地方和不同的地方?(这三面国旗形状相同,大小不同。)
师:不同场合的国旗大小是不一样的,但是他们是按一定的比制作的,在制作过程中,每面国旗长与宽存在有趣的比,你想知道吗?那就让我们算一算吧。
请大家根据国旗下面的数据,分别算出每面国旗长与宽的比值。
让一名学生在黑板上计算,其余学生写在练习本上。
提问:通过计算你发现了什么?(每面国旗长与宽的比值相等。)
根据这三个比,从中任意选两个比能不能组成一个等式。
让学生分别说出三个等式:0202
5:10/3=3/25:10/3=2.4:1.6
2.4:1.6=3/2=5:10/3=60:40
60:40=3/22.4:1.6=60:40
提问:这些等式有什么相同点?(都有两个比,并且两个比的比值相等。)
像这样的等式,叫做比例?
谁能用自己的话说一说什么叫比例?学生
引导学生看课本40页教材上是怎样定义的?学生齐读。
教师板书:表示两个比相等的式子叫做比例。
在这句话中有哪些字或词最关键:两个比相等。
师:根据比例的意义让学生举一些比例的例子。
生:a:b=c:d或a/b=c/d
2.深化了解比例的意义
刚才我们通过计算发现,国旗长与宽的比值相等。
所以每两面国旗的长与宽可以组成比例。
除此之外,还有哪些比可以组成比例?分别写出来,根据国旗下面长与宽的数据小组合作交流:
师:根据学生汇报,将组成的比例板书。
宽:长=宽:长长:长=宽:宽
10/3:5=40:605:2.4=10/3:1.6
10/3:5=1.6:2.45:60=10/3:40
1.6:2.4=40:602.4:60=1.6:40
老师这里有两个比它们是否相等?强调:只有对应的量之间的比比值才相等。才可以组成比例。板书:第一面的长:第一面的宽和第二面的宽:第二面的长。学生发现不相等,师:为什么不相等。师结合板书归纳(出示课件)师根据学生们找的结果,我们看到这三面国旗的长与宽的比值都相等,所以每面国旗的长与宽的比都可以组成比例。同样,宽与长的比值也都相等,所以每两面国旗宽与长的比可以组成比例。
每两面国旗长与长的比可以和宽与宽的比组成比例。
(三)练习巩固
做一做。
(1)6:10和9:15
(2)20:5和1:4
(3)0.6:0.2和3/4:1/4
(4)4:3和2:1.5
两名同学板书,其他同学写在练习卡上,让学生讲解并纠错。
(四)请同学们看一看比例,比和比例有什么联系和区别?根据学生回答教师课件出示表格。
意义:两个数相除叫做两个数的比。表示两个比相等的式子。
项数:两项四项
联系:比例是由两个比组成的。
(五)当堂训练:
(六)课堂总结:
今天我们学习了比例的意义,你有什么收获?