教案模板可以作为教师备课的基本工具,帮助教师合理地安排教学进程。教案模板的具体内容和形式可以因学科不同而有所差异,但总体目标都是帮助教师实现教学目标和学生发展。
精选勾股定理应用教案(模板21篇)篇一
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点。
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
精选勾股定理应用教案(模板21篇)篇二
教学目标:
1、知识目标:
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
教学过程:
1、新课背景知识复习。
(1)三角形的三边关系。
(2)问题:(投影显示)。
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得。
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边。
(2)学生根据上述学习,提出自己的问题(待定)。
3、定理的证明方法。
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形。
方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。
以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明。
4、定理与逆定理的应用。
5、课堂小结:
已知直角三角形的两边求第三边。
已知直角三角形的一边,求另两边的关系。
6、布置作业:
a、书面作业p130#1、2、3。
b、上交作业p132#1、3。
精选勾股定理应用教案(模板21篇)篇三
本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:
(1)让学生主动提出问题。
(2)让学生自己解决问题。
(3)通过实际问题的解决,培养学生的数学意识.。
精选勾股定理应用教案(模板21篇)篇四
1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。
3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。
精选勾股定理应用教案(模板21篇)篇五
即直角三角形两直角的平方和等于斜边的平方.。
因此,在运用勾股定理计算三角形的边长时,要注意如下三点:
(2)注意分清斜边和直角边,避免盲目代入公式致错;
如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.。
请读者证明.。
请同学们自己证明图(2)、(3).。
3.在数轴上表示无理数。
二、典例精析。
132-52=144,所以另一条直角边的长为12.。
所以这个直角三角形的面积是×12×5=30(cm2).。
例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到。
顶点b,则它走过的最短路程为。
a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的。
各棱长相等,因此只有一种展开图.。
解:将正方体侧面展开。
精选勾股定理应用教案(模板21篇)篇六
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
精选勾股定理应用教案(模板21篇)篇七
1、通过拼图,用面积的方法说明勾股定理的正确性.
2、通过实例应用勾股定理,培养学生的知识应用技能.
一、学前准备:
1、阅读课本第46页到第47页,完成下列问题:。
2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的'图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)。
二、合作探究:
(一)自学、相信自己:
(二)思索、交流:
(三)应用、探究:
(四)巩固练习:
1、如图,64、400分别为所在正方形的面积,则图中字。
母a所代表的正方形面积是_________。
三.学习体会:
本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。
2②图。
四.自我测试:
五.自我提高:
精选勾股定理应用教案(模板21篇)篇八
教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
教学重点:平行四边形的判定方法及应用。
教学难点:平行四边形的判定定理与性质定理的灵活应用。
引
二.探。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
证一证。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
证明:(画出图形)。
三.结。
两组对边分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
四.用。
精选勾股定理应用教案(模板21篇)篇九
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法。
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观。
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体。
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。
情景:
第二环节:合作探究(15分钟,学生分组合作探究)。
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
第三环节:做一做(7分钟,学生合作探究)。
教材23页。
李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
第四环节:巩固练习(10分钟,学生独立完成)。
2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。
第五环节课堂小结(3分钟,师生问答)。
内容:如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)。
作业:1.课本习题1.5第1,2,3题.。
要求:a组(学优生):1、2、3。
b组(中等生):1、2。
c组(后三分之一生):1。
精选勾股定理应用教案(模板21篇)篇十
1、知识目标:
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数.
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征.。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
精选勾股定理应用教案(模板21篇)篇十一
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.
二、教学任务分析。
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节.具体内容是运用勾股定理及其逆定理解决简单的实际问题.当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力.
本节课的教学目标是:
1.通过观察图形,探索图形间的关系,发展学生的空间观念.
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.
四、教法学法。
1.教学方法。
引导—探究—归纳。
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;。
(2)从学生活动出发,顺势教学过程;。
(3)利用探索研究手段,通过思维深入,领悟教学过程.
2.课前准备。
教具:教材、电脑、多媒体课件.
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.
五、教学过程分析。
本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.
精选勾股定理应用教案(模板21篇)篇十二
教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
精选勾股定理应用教案(模板21篇)篇十三
勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《新版数学课程标准》对勾股定理教学内容的要求是:
1、在研究图形性质和运动等过程中,进一步发展空间观念;
2、在多种形式的数学活动中,发展合情推理能力;
3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;
4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节课的教学目标是:
1、能正确运用勾股定理及其逆定理解决简单的实际问题。
教学重点和难点:
应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。
在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。
本节课设计了七个环《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入。
情景1:复习提问:勾股定理的语言表述以及几何语言表达?
设计意图:温习旧知识,规范语言及数学表达,体现。
设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。
第二环节:合作探究(圆柱体表面路程最短问题)。
情景3:课本引例(蚂蚁怎样走最近)。
第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的距离最短问题)。
设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。
第四环节:议一议。
内容:李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺:
(1)你能替他想办法完成任务吗?
设计意图:
第五环节:方程与勾股定理。
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少尺?《意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。
第六环节:交流小结内容:师生相互交流总结:
1、解决实际问题的方法是建立数学模型求解、
2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、
3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。
第七环作业设计:
第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。
精选勾股定理应用教案(模板21篇)篇十四
1。有一棵高的大树,一棵高的小树,两树之间相距,今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,至少飞了米。
2。冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米。
3。如图,台阶(都是直角)下端点b到上端点a的最短距离是()。
a8b15c17d25。
4。欲将一根长129cm的木棒放在长、高、宽分别是40cm、30cm、120cm的木箱中,能放得进去吗?请说明理由。
八。【课后作业】及时巩固、查漏补缺。
(1)试求该车从a点到b的平均速度;
(2)试说明该车是否超过限速().。
精选勾股定理应用教案(模板21篇)篇十五
教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:
1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:
1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
教学准备阶段:
学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
(一)引入。
同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)。
(二)实验探究。
设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:
(讨论难点:以斜边为边的正方形的面积找法)。
交流后得出一般结论:(用关于a、b、c的式子表示)。
(三)探索所得结论的正确性。
当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?
1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)。
在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:
如图2(用补的方法说明)。
师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)。
如图3(用割的方法去探索)。
师介绍:(出示图片)中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的`等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)。
20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)。
如图4(构造新图形的方法去探索)。
1、继续收集、整理有关勾股定理的证明方的探索问题并交流。
精选勾股定理应用教案(模板21篇)篇十六
这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:
1、从生活出发的教学让学生感受到学习的快乐。
在“勾股定理”这节课中,一开始引入情景:
平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。
精选勾股定理应用教案(模板21篇)篇十七
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
【过程与方法】。
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
【情感、态度与价值观】。
体会事物之间的联系,感受几何的魅力。
【重点】勾股定理的逆定理及其证明。
【难点】勾股定理的逆定理的证明。
(一)导入新课。
复习勾股定理,分清其题设和结论。
提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。
出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。
(二)讲解新知。
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确。
出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。
精选勾股定理应用教案(模板21篇)篇十八
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;。
二数学思考。
1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;。
2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.
三解决问题。
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.
四情感态度。
2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.
精选勾股定理应用教案(模板21篇)篇十九
星期三上午第一节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
精选勾股定理应用教案(模板21篇)篇二十
一、输入少量拼音。
如果需要的拼音不多,可插入文本框,用小写英文来输入不含声调的音节,再借助中文输入法工具条上的软键盘插入含声调的元音字母。
图片1:输入无声调音节。
图片2:用软键盘输入含声调的元音字母。
二、拼音的显示与隐藏。
如果想控制拼音的显示和隐藏,只要设置拼音的“自定义动画”效果为单击相应汉字时出现即可。
三、整行汉字输入拼音。
1、输入汉字,用拼音指南加强版添加拼音。
2、用wps应用中心集成的屏幕截图功能分别截取拼音和汉字,到wps演示中粘贴。
四、制作“看拼音写汉字”幻灯片。
期中、期末复习少不了要出大量的看拼音写汉字题目给学生练习,用幻灯片向学生出示题目是个好办法。制作步骤与上面的操作类似。
1、输入词语加拼音。
2、用拼音指南加强版隐藏汉字。
3、在每个词语的各个汉字之间插入空格调整间距。
4、截取拼音图片到演示文稿。
5、插入文本框,以添加括号。
精选勾股定理应用教案(模板21篇)篇二十一
教学目标:
1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:
课前准备:
多媒体ppt,相关图片。
教学过程:
(一)情境导入。
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。