心得体会是我们在实践中领悟到的宝贵经验,可以帮助我们更好地应对类似的问题或情境。以下是一些备受推崇的心得体会范文,希望可以给大家提供一些写作的参考和借鉴。
2023年因数与倍数心得体会五年级(通用14篇)篇一
因数和倍数是数学中非常基础和重要的概念。在二年级学习过程中,我深深体会到了因数与倍数的重要性和实用性。通过掌握因数与倍数的概念和运算,我提高了自己的数学能力,也培养了自己的逻辑思维和解决问题的能力。下面我将从因数的概念、找因数的方法、倍数的概念与性质以及因数与倍数的应用等方面,分享一下我的学习体会。
首先,因数是指能够整除一个数的所有因数。在学习因数的过程中,我明白了因数对于一个数的重要性。因数可以帮助我更好地理解一个数的性质和特点。比如,找出一个数的因数,我可以确定这个数是否为质数或者合数,进而推算出这个数的范围和特性。通过因数的分解,我可以将一个数表达为若干个质数的乘积,这对于后面的数学学习来说非常重要。同时,掌握了因数的概念,我就能够更好地理解分数的运算和性质,为将来学习更复杂的数学知识打下基础。
其次,找因数的方法也是我在学习中需要掌握的重要技巧之一。通过找因数的方法,我可以更快地找出一个数的因数,从而进一步处理数学问题。对于小的数,我可以逐一尝试每一个可能的因数,直到找到所有的因数为止。对于大一些的数,我可以运用辗转相除法来寻找因数,将一个数进行一次又一次的除法运算,最终得到所有的因数。当然,在寻找因数的过程中,辅助数学工具和逻辑推理也是不可或缺的。通过积极参与课堂讨论和和同学们的共同探讨,我逐渐掌握了找因数的技巧和方法,提高了自己的因数运算能力。
第三,倍数是能够被一个数整除的所有数。学习倍数的概念让我进一步理解了数之间的关联和数学运算的特性。在找倍数的过程中,我发现了数的倍数之间的规律和特点,帮助我更好地理解数的整数倍运算。通过找倍数,我可以将复杂的数学问题转化为整数倍的关系,从而更好地解决问题。同时,掌握了倍数的概念和性质,我也能够更好的理解小数、分数和百分数等数学概念的关系和运算。
最后,因数和倍数的应用也是我在学习中得到的重要的启发。因数和倍数的应用非常广泛,无论是在日常生活中还是在各个领域的科学研究中,都能看到它们的身影。通过运用因数和倍数的相关知识,我可以更好地计算和预测数值的关系和趋势。例如,在分析天气预报获得的数据时,我可以根据温度的因数和倍数关系推测未来几天的温度情况。在购物时,我可以利用价格的倍数关系来计算不同折扣的商品价格,从而找到最合适的购买方案。因数与倍数的应用无处不在,给我们的生活带来了很大的方便和便利。
通过学习因数与倍数的相关知识,我不仅提高了数学能力,还培养了自己的逻辑思维和解决问题的能力。因数与倍数作为数学的基础知识,为我未来更高层次的学习打下了坚实的基础。在今后的学习中,我将继续努力,不断提高自己的数学能力,为理解更复杂的数学问题和应用奠定坚实的基础。同时,我也会将因数与倍数的应用运用到日常生活和实际的问题中,发挥数学知识的实际价值。
总之,因数与倍数是数学中的重要概念。通过学习、理解和应用因数与倍数的相关知识,我从中受益匪浅。它不仅提高了我的数学能力,还培养了我的逻辑思维和解决问题的能力。我相信,在今后的学习中,因数与倍数的知识将继续发挥重要的作用,为我更好地理解数学知识和应用数学解决实际问题提供帮助。
2023年因数与倍数心得体会五年级(通用14篇)篇二
在我们学习数学的过程中,因数和倍数是最基础的概念之一。这两个概念在日常生活和学习中都有着非常重要的作用。在五年级中,我们开始深入学习因数和倍数的相关知识。在这个过程中,我不仅掌握了因数和倍数的运算规律,还深刻理解了他们在我们生活中的实际意义。
第二段:对因数的认识。
因数,指能整除该数的所有正整数。在五年级中,我们学习了如何找出一个数的因数。其实,要找出一个数的因数,最简单的方法就是通过分解质因数来得出。当然,对于一些特别的数字,比如质数,我们可以直接确定它的因数为1和本身。因数最常见的运用就是求出一个数的最大公因数和最小公倍数,这样就方便了我们在解决生活中实际问题的时候,比如合并不同的比例,进行约简等。
第三段:对倍数的认识。
倍数,是指一个数被另一个数整除得到的结果。在五年级中,我们学习了如何判断一个数是另一个数的倍数。通常,我们可以利用取余运算来判断两个数之间的倍数关系。与因数相似,倍数也有着广泛的应用场景。我们可以利用倍数来解决一些实际问题,比如在分糖果的时候,将糖果的数量按照某种倍数分给每个人,这样就可以保证每个人的数量相等。
第四段:因数和倍数的关系。
在学习因数和倍数的过程中,我发现因数和倍数之间有着比较紧密的关系。如果一个数a是另一个数b的因数,那么b无论乘以多少个正整数,都必定是a的倍数。反过来,如果一个数b是另一个数a的倍数,那么a无论除以多少个除数,都必定是b的因数。
第五段:总结。
在学习因数和倍数的过程中,我不仅提高了自己数学水平,还更好地了解了他们在实际生活中的应用。通过找到一个数的因数和倍数,我们可以更加方便地求解实际生活中遇到的问题。因此,我觉得这两个概念在我们的生活中至关重要,也应该得到更多的重视。
2023年因数与倍数心得体会五年级(通用14篇)篇三
教科书第25页,练习四第5~8题。
1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。
2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。
3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。
一、基本训练。
1、我们已经掌握了找两个数的.公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。
(板书课题:公倍数和最小公倍数练习)。
2、填空。
5的倍数有:()。
7的倍数有:()。
5和7的公倍数有:()。
5和7的最小公倍数是:()。
3、完成练习四第5题。
(1)理解题意,独立找出每组数的最小公倍数。
(2)汇报结果,集体评讲。
(3)观察第一组中两个数的最小公倍数,看看有什么发现?
每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?
(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)。
在有些情况下,两个数的最小公倍数是这两个数的乘积。
4、完成练习四第6题。
你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?
交流,汇报。
说说你是怎么想的?
二、提高训练。
1、完成练习四第7题。
(1)理解题意,独立完成填表。
(2)你是怎样找到这两路车第二次同时发车的时间的?
你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)。
2、完成练习四第8题。
(1)理解题意。
你能说说,他们下次相遇,是在几月几日吗?(8月24日)。
你是怎样知道的?
要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)
三、课堂小结。
通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。
在小组中互相说说自己本节课的收获。
2023年因数与倍数心得体会五年级(通用14篇)篇四
1、对比新版教材知识设置与传统教材的区别。
有关数论的这部分知识是传统教学内容,但教材在传承以往优秀做法的同时也进行了较大幅度的改动。无论是从宏观方面——内容的划分,还是从微观方面——具体内容的设计上都独具匠心。“因数与倍数”的认识与原教材有以下两方面的区别:
(1)新课标教材不再提“整除”的概念,也不再是从除法算式的观察中引入本单元的学习,而是反其道而行之,通过乘法算式来导入新知。
(2)“约数”一词被“因数”所取代。
这样的变化原因何在?教师必须要认真研读教材,深入了解编者意图,才能够正确、灵活驾驭教材。因此,我通过学习教参了解到以下信息:
学生的原有知识基础是在已经能够区分整除与余数除法,对整除的含义有比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,本教材中删去了“整除”的数学化定义。
2、相似概念的对比。
(1)彼“因数”非此“因数”。
在同一个乘法算式中,两者都是指乘号两边的整数,但前者是相对于“积”而言的,与“乘数”同义,可以是小数。而后者是相对于“倍数”而言的,与以前所说的“约数”同义,说“x是x的因数”时,两者都只能是整数。
(2)“倍数”与“倍”的区别。
“倍”的概念比“倍数”要广。我们可以说“1.5是0.3的5倍”,但不能说”1.5是0.3的倍数”。我们在求一个数的倍数时,运用的方法与“求一个数的几倍是多少”是相同的,只是这里的“几倍”都是指整数倍。
1、“因数与倍数”概念的数的应用范围的规定直接运用讲述法。对与本知识点的概念是人为规定的一个范围,因此,对于学生和第一接触的印象是没有什么可以探究和探索的要求,而且给学生一个直观的感受。“因数与倍数”的运用范围就是在非0自然数的范畴之内,与小数无关,与分数无关,与负数无关(虽没学,但有小部分学生了解)。同时强调——非0——因为0乘任何数得0,0除以任何数得0。研究它的因数与倍数是没有意义。我得到的经验就是对于数学当中规定性的概念用直接讲述法,让学生清晰明确。因此,用直接导入法,先复习自然数的概念,再写出乘法算式3*4=12,说明在这个算式中,3和4是12的因数,12是3和4的倍数。
2、在进行延续性教学中,可以让学生探究怎么样找一个数的因数和倍数,在板书要讲究一个格式与对称性,这样在对学生发现倍数与因数个数的有限与无限的对比,再就是发现一个数的因数的最小因数是1,最大因数是它本身。一个数的倍数的最小的倍数是它本身,而没有最大的倍数。这些都是上课时应该要注意的细节,这对于学生良好的学习惯的培养也是很重要的。
2023年因数与倍数心得体会五年级(通用14篇)篇五
教学内容:
我上的这课是选自义务教育课程标准实验教科书二年级上册中的乘法口诀中的一个内容。
教材分析:
教材通过“一个星期有几天”的情境,引导学生独立编制乘法口诀,在7的乘法口诀中,前6句是学过的,只有后3句是新的。
教学目标:
这节课的教学目标是独立编制7的乘法口诀,感受数学与生活的密切联系,会用乘法口诀计算表内乘法,解决一些简单的实际问题。
设计意图:
“乘法口诀”是小学数学教材体系中的重要内容,在很多教师的潜意识里,“口诀”只是单纯为“计算”而存在。于是“熟记口诀”和用口诀计算题目成了教师构建课堂的两个核心视点,这样一来,数学口诀服务于数学计算的“工具性”得到了充分体现,而作为数学口诀本身所具有的知识体价值却没有引起注意。鉴于这一点,我在设计这一课时,充分利用学生的分组活动来体现乘法口诀的知识体价值。
整个课堂教学中,我编制了四个板块。即“在探究规律中感知口诀,在自主合作中创编口诀,在解读品味中感悟口诀,在_运用中深化口诀”。
上课伊始,我安排学生坐8组,每组7人,坐好后,每组抽调1人上前,利用“拍手”、“学小狗叫”的游戏复习6的乘法口诀,然后学生回座位,引出七的乘法口诀。同时,我根据二年级学生的年龄特点,引入白雪公主和七个小矮人的童话情节,引导学生在故事氛围中生成探究材料,进而在数学活动中感知口诀原型。
紧接着,我通过开展分组自编口诀,分组交流口诀,分组汇报口诀,评价修改口诀等数学活动,充分体验自己的学习成果。
小组活动的目标不仅是认知的过程,更是一个交往过程与审美过程,是相互间实现信息资源的整合、拓展和完善自我认知的过程。其精髓是通过生生互动求得小组成员的共同进步,培养学生学会交往、学会参与、学会倾听、学会尊重他人。所以,小组活动的内容选择要具有挑战性、开放性、探索性的问题。而且小组活动应考虑到小组成员的差异性、小组成员分工的合理性、小组成员的合作方式。因此,在分组活动时,我特意安排学生写口诀、编口诀、交流口诀、汇报口诀,从而让小组成员不仅要努力达到个人目标,而且要帮助同伴实现目标,通过相互协作,完成共同的学习任务。
然后,我根据学生对乘法口诀感悟的差异性着力引导学生观察口诀的隐含规律,亲自体验诵记、交流口诀的记忆窍门等途径增进这学生对乘法口诀的个性化理解。
最后,我设计了一组口诀运用的题目,远及古代,计算唐诗字数,近到当前,计算一周喝水杯数,计算瓢虫背上的黑点数,这样让学生对乘法口诀的现实色彩有了更深刻的认识,使得数学教学不再是苍白的说教,而是主体反思。整堂课基本能按自己的设计意图完成教学任务。
最后希望各位领导,各位老师真心诚意的给我提出宝贵意见和建议,让我在今后的教学中得到进步。
2023年因数与倍数心得体会五年级(通用14篇)篇六
“倍数和因数”与“倍数和约数”这两种说法只是新旧教材的说法不同而已,其实都是表示同一类数。(即因数也是约数)。
也许我的头脑还受旧版教材的影响,我认为说到“倍数与因数”必须要谈到整除,因为整除是研究“因数和倍数”的条件,学生在没有这条件学习整除,只要教师的教学方法稍有不慎,学生会很快误入小数也有因数;但是我在实际的教学过程中,也体会到了教材中不提整除的好处。而我的心里却又产生了一个新的疑问,s版教材到底在什么时候于什么数学环境下才提出“整除”这个概念呢?会不会在六年级课改才出现呢?我期待着。
1、在教学2和5的倍数时,是用同一种方法找出它们倍数的,学生很容易掌握,也很快就能把2和5的倍数说出,并能准确找出各自的倍数,此时,教师应把学生的思维转到同时是2和5的倍数怎样找?接着引导学生归纳出同时是2和5的倍数的特征,因此,让学生的知识面进一步加大。
当学生熟练掌握3的`倍数的特征时,教师话峰一转,你们能归纳出9的倍数的特征吗?学生在教师这一激发下,他们的求知欲兴趣大增,然后教师启学生运用找3的倍数的方法,去找9的倍数的特征,学生会轻而易举地归纳、总结出9的倍数的特征。通过找9的倍数的特征,既巩固了学生学习3的倍数的特征,还使学生的知识面扩大,达到知识的巩固和迁移的目的。
3、当学生掌握了2、5和3的倍数的特征时,教师这时应引导学生进一步归纳、总结,把这三个特征综合,从而得出同时是2、3和5的倍数的特征。
通过这样的教学,让学生真正感受到“灵活”两字,并且能把知识面向纵横方向发展。
2023年因数与倍数心得体会五年级(通用14篇)篇七
因数和倍数是小学数学中非常基础而重要的概念。因数指的是一个数能够被另一个数整除,而倍数则是指一个数是另一个数的整数倍。在五年级数学学习中,我们已经开始了深入的了解和研究因数和倍数。
第二段:因数的学习和理解。
在学习中,我们首先了解了因数的定义和性质,学会了如何求一个数的因数,还进行了练习,从中归纳如下规律:一个数的因数的个数有限,且其中一半是小于它的数的因数,一半是大于它的数的因数。同时还学会了不同的因数化式,例如质因数分解、因数分解、公因式、最大公因数等。
第三段:倍数的学习和理解。
接着,我们深入学习了倍数的概念和运算,学会了求一个数的倍数以及找到两个数的公倍数。我们对倍数的认识进行了系统的了解,掌握了描绘倍数之间关系的工具,例如最小公倍数。在这一过程中,我们学会了用图示或等式描述倍数,以及如何寻找它们的特定模式。
在学习中,我们还积极地了解了因数和倍数之间的联系,发现了它们之间不可忽视的同一性和区别。因数和倍数是紧密相关的,它们彼此间有着重要的联系。通过分析它们的联系,我们发现:我们首先找到数列的公共因数或它们的最大公因数,这样,我们就能够快速找到任意一组数的公共倍数。
第五段:对因数和倍数的学习的感想。
搞完这门课程,我深刻认识到因数和倍数的重要性,它们可以方便地解决许多数学问题,并且在实际生活中也非常实用。这门课程也锻炼了我们的思考能力、计算能力以及分析问题的能力。同时,我也意识到了在学习过程中,做好课前预习是非常重要的。因为难点在前,问题在前,把课前预习做好了,课堂上遇到的也会轻松很多。做好好课前预习,掌握课堂重点,能够让我的学习更加高效,提高了学习效率。
总之,学习因数和倍数是我们五年级必修的数学课程,它对我们的日常生活中的数学运算有重要的帮助。深入学习和理解因数和倍数,是我们扎实掌握小学数学的重要体现。我们需要在实践中继续加深对因数和倍数的认识,优化学习方法,提高学习效率。
2023年因数与倍数心得体会五年级(通用14篇)篇八
第一段(引入)。
作为一名五年级学生,因数与倍数是我们学习数学的重要内容,我们需要掌握因数与倍数的概念、性质以及应用。在这一过程中,我有了很多的体会和心得,接下来我将与大家分享。
第二段(因数的理解和应用)。
在学习因数时,我们首先需要理解因数的概念,即一个数可以被另一个数整除,那么这个数就是另一个数的因数。通过这一基本概念,我们可以进一步了解因数的性质,例如,每个数都有1和自身作为因数,还有相同的因数可以组成更大的公因数。在应用方面,我们可以用因数来进行数的分解、判定质数等操作。
第三段(倍数的理解和应用)。
和因数类似,倍数也是数学中的一个重要概念。如果一个数可以被另一个数整除,那么这个数就是另一个数的倍数。同样地,我们需要了解倍数的基本性质,例如一个数的倍数可以无限制地扩展,而两个数的公倍数可以通过它们的公因数来求得。在应用方面,我们可以用倍数来进行最小公倍数、数的关系判断等操作。
因数和倍数虽然是不同的概念,但它们之间存在着密切的联系。因为如果两个数互为因数和倍数,那么这两个数就是相等的。因此,我们可以通过因数和倍数来判断两个数之间的大小关系,例如判断两个数的大小、比较大小等。
第五段(结论)。
通过学习因数与倍数,我深刻认识到数学知识的重要性和应用价值。而且,在学习的过程中,我们需要通过多种方法进行练习和掌握,例如可以通过题目、游戏、课堂互动等方式,加深对因数与倍数的理解和应用。对于我来说,还有很多需要继续学习和掌握的内容,我会继续努力,提高自己的数学水平。
2023年因数与倍数心得体会五年级(通用14篇)篇九
今天听了唐老师上的《3的倍数的特征》这节课,让我感受了在新课堂模式中,教师的主导和学生的主体地位的发挥,教师仅仅只是一位组织者,一个帮手,而学生才是主人。课堂上,学生轻松愉悦地学习、交流、展示,让我觉得这样的课堂才能培养出全面发展的新型人才来。
这节课的设计从整体上安排了五个环节:
2.导入激趣,通过学生组织的摆卡片组数游戏复习了“2、5的倍数的特征”,同时让学生摆出是3的倍数的数。学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望。
3.自主探究,小组合作这个环节中,通过学生独立圈数,小组合作讨论找规律,来发现3的倍数的特征。给学生提供了生生交流,合作交流的平台,有了表达和倾听的机会。
4.展示交流中,学生表现得活跃,组织语言能力强,思维敏捷。这说明唐老师平时充分地给予了学生合作学习,展示自我的机会。
5.达标测评练习,使得课堂学习知识得到了升华,学会了判断和写3的倍数的特征,知识掌握情况及时有了反馈。
我们在学习的同时,要找到值得注意和改进的地方。对于这节课,我认为有几点值得大家一起探讨:
4在几个互动环节中,形式单一化,如:“请一个同学来验证一下这个数是否是3的倍数。”可以让每一个学生都参与其中。避免有的学生“没戏演”就“退场”了。
总之,这一节课让我们在探究新课堂模式,寻找学生“自主、合作、探究”的学习方法以启发。
2023年因数与倍数心得体会五年级(通用14篇)篇十
人教版小学数学五年级下册教材第12—13页。
1.我能理解因数与倍数的含义。
2.我会有序地思考,掌握了找一个数的因数的方法。
3.我知道一个数的因数的个数是有限的。
理解因数和倍数的含义,掌握求一个数的因数的方法。
能熟练地找一个数的因数。
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
三、合作探究
1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
2023年因数与倍数心得体会五年级(通用14篇)篇十一
认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
2023年因数与倍数心得体会五年级(通用14篇)篇十二
学习目标:
2.我会有序地思考,掌握了找一个数的因数的方法。
学习重点:
理解因数和倍数的含义,掌握求一个数的.因数的方法。
学习难点:
能熟练地找一个数的因数。
教学过程:
一、导入新课。
二、检查独学。
1.互动分享收获。
2.质疑探讨。
三、合作探究。
1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?
(1)我的想法:________________________________。
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示:18的因数。
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________。
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
2023年因数与倍数心得体会五年级(通用14篇)篇十三
听了一节数学课——《倍数与因数》,真的是感受颇深,受益匪浅,让我充分领略了课堂教学的无穷艺术魅力。现就这次学习谈一谈自己的点滴体会。
一、收获。
1、出去听课比在学校闭门造车受益要快要多,来得更直接。
2、真实——课堂教学应该追求的境界。
3、情境——创设贴近生活的教学情境是课堂教学有效的手段。
教学情境的设置应注重来自于生活,并不是每一节课都要设置与生活紧密结合的情境,而是尽量贴近于生活,这样学生学习起来便于思考操作,同时也能在生活中加以应用。特别是像我们学校的学生更要注重与生活实际的结合,因为我们的目标就是要让学生通过学习掌握解决生活中出现的一些问题的手段方法,掌握技能。所以情境的创设需要我在生活中教学中多观察,多思考,多操作。
4、三维目标的整合——课堂教学的更高要求。
教育理念的转变正在发生巨大的变化,本节课中的“三维目标”要求教师在教学中尽量做到这三个目标的整合,而且是“品之有味,寻之无迹”,如在这节数学课的教学中,她通过教学让学生体会到了,不同的事物从不同的角度去看去评定都会有不同的结果和答案,那么做人就是这样我们不应该以一种标准去看待我们周边的人、事,我们要从多角度去思考一个问题,所以这节课就是在这样的看似在作练习的过程中,让学生通过学习知识,提高了学生分析判断事物的能力,同时也教会学生如何做人。做到了“三维目标的整合”。
5、亮点——让课堂教学生辉的装饰品。
能让听者有畅所欲言的欲望的课就是一节好课,能够让听者回去就可借鉴操作的也是一节好课,我觉得一节好课并非是很完美的,哪怕只有一个亮点,能够引起大家共鸣,我觉得都是好课,其实这位老师的课并不是像我想象中的那么好,而且在我们学校应用起来未必就很实用,但是在他练习的设计中,他采用了层层递进、小组合作,并让学生进行质疑,我感到了教学的效果非常好,这就是一个亮点,使这节课生辉。
6、教师素质之高,学生习惯之好。是我们该思考如何去做。
二、自我反思。
总之,观摩了这位老师的课,聆听了教研室教学质量分析,我充分认识到每一次外出学习对于我都是一种反思和激励,让我在欣赏别人精彩的同时发现了自己的很多不足,在以后的教学中,一定要严格要求自己:做到课前认真解读教材,根据学生的实际情况设计出合理的教学流程;课后认真反思,坚持写好教学后记;多看书学习,多做笔记,不断提高自己教学业务水平。
2023年因数与倍数心得体会五年级(通用14篇)篇十四
4、培养学生的观察能力。
掌握找一个数的因数和倍数的方法。
能熟练地找一个数的因数和倍数。
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12。
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)。
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)。
齐读p12的注意。
二、新授:
(一)找因数:
1、出示例1:18的因数有哪几个?
学生尝试完成:汇报。
(18的因数有:1,2,3,6,9,18)。
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)。
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36。
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)。
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)。
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是(),而最大的一定是()。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如。
18的因数。
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……。
师:为什么找不完?
你是怎么找到这些倍数的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍数最小是几?最大的.你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12。
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……。
你是怎么找的?(用3分别乘以1,2,3,……倍)。
5的倍数有:5,10,15,20,……。
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示。
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)。
三、课堂小结:
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业:
完成练习二1~4题。