教学工作计划还可以帮助教师在教学过程中及时调整和改进教学方法,以更好地满足学生的学习需求。各地教育局发布了一些示范性教学工作计划,供广大教师参考和学习。
最优分数乘法解决问题教案范文(18篇)篇一
纵观本节课的教学,我认为做得比较好的有以下几点:
兴趣是最好的老师。学生在学习过程中只有队数学学习产生兴趣,才能积极主动地参与到学习过程之中,学到的知识与方法才能牢固与持久。而学生的生活与他们对数学的理解力的发展是交织在一起的,所以数学教学应尽量与学生的生活现实和学习活动联系起来。“良好的开始是成功的一半。”课始,我将教材中的“植树造林”的问题情境调整成了“看成语说百分数”的抢答游戏,利用比赛活动一下子就点燃了学生的学习热情,并根据比赛的得分结果生成动态的教学资源。这样的比赛活动是即切合学生的生活实际,又让学生自然而然地产生了学习的实际需要,激发了学生学习的兴趣,并为开启全课的学习做好了很好的铺垫。
小学是学生习惯形成的重要阶段,学生在学习过程中养成探索的习惯、交流的习惯、思考的习惯、质疑的习惯等,对于他们来说会受用终身。本课教学中,我时时处处为学生提供思考质疑的平台,培养学生的问题意识。在抢答游戏后,我组织学生根据比赛的得分结果,提出有关百分数的问题,巧妙地引出了本节课要解决的新问题。接着,我放手让学生独立思考,自主尝试解决新问题,并在小组内交流各自的解决方法。全班汇报中,我首先引导学生汇报小组交流的经验:“最快的是你们组,你们组怎么交流这么快?”“我发现你们组的交流挺有特点的,来,给大家说说你们是怎么交流的?”接下来,对于学生的各种解法,教师没有立即下结论,而是引导学生对汇报的方法进行质疑:“对于这种方法,你们有什么问题想请教或交流的吗?”学生在体验中探索,在思考中质疑,在追问中明理,在交流中提升。正如波利亚认为的一样:“学习任何知识的最佳途径都是由自己去发现。因为这种发现理解最深刻,也最容易掌握内在规律与联系。”而这些良好的学习习惯,需要教师对学生进行长时间的培养,一旦学生养成了这些学习习惯,他们便乐此不疲。
“授之以鱼,不如授之以渔。”数学活动经验的积累与提升,需要对已经经历的活动过程进行观察、回顾或反思,也需要对活动过程中的'某些方法进行比较,形成自己的认识。本节课的教学中,我多次组织或引导或促成学生进行经验的积累,以形成一定的自我学习与反思的能力。在学习单中,我设计了“阅读与理解”“分析与解答”“回顾与反思”三个步骤,学生在经历问题解决的全过程中进一步明确了问题解决的基本步骤。学生自主尝试解决问题后,我引导学生思考“你是怎样想到这种方法的”,让学生自主沟通百分数问题与分数问题的联系,积累问题解决的策略之“类比推理”与“转化”。而“类比推理”是学生自主解决本节课新问题的法宝,为了进一步积累这种经验,我引导学生进行专题回顾:“回顾一下,以前还有哪些内容我们也是通过类比学习的?”学生在回顾反思中进一步掌握了类比推理的思想方法。在全班交流中,我引导学生进行了较为全面的回顾与反思:“你们都回顾反思了哪些问题呢?”学生在回顾与反思进一步积累了学习经验,提升了学习能力。
本节课的练习应用体现了让学生将获得的经验又运用到问题解决中,一方面检验获得的解决问题的经验,强化对这些经验的感悟,另一方面通过解决不同情境的问题,进一步综合与改造原有经验,对问题解决的经验获得新的感悟,提高解决问题的能力。具体看,在基础练习“说一说”中,学生通过自己先举例说说对“多百分之几”“少百分之几”“节约百分之几”的理解,再选择教师收集的有关实例,进一步理解了多(或少)百分之几的含义。在“填一填”中,通过差量与单位“1”的量的不同出现形式,学生丰富了已有的经验。在“怎样评选进步之星好”中,通过让学生帮助老师出主意,学生体会到学习成绩的增长幅度可以作为进步之星的一个参考因素,但不是唯一因素,考虑问题要多角度。而“我们的数学书”既培养了学生估算的意识,又培养了学生思维的抽象能力。在学生说出计算方法和计算结果后,我及时追问:“这里的3和2又不是长和宽的具体数量,你们怎么能这样算呢?”此处追问不仅指向学生思维的深度,而且指向学生思维的过程,使其知其然,又能知其所以然,进一步丰富了学习经验。
总之,本堂课我注重激活了学生已有经验,尊重他们的知识起点,敢于让他们自主尝试。我记得叶圣陶先生曾经说过这样一句话:当教师像是帮助小孩走路,扶他一把,要随时准备放,能放手就放手。今天的课堂,学生尝试在先,集体交流跟进,教师点拨善后。
最优分数乘法解决问题教案范文(18篇)篇二
3、培养学生的应用意识,分析问题和解决问题的能力。
会分析百分数应用题的数量关系,解决稍复杂的百分数应用题。教学难点:让学生利用百分数应用题的数量关系,掌握解决复杂百分数应用题的方法。
课件和练习题单。
一、复习解决一般应用题的解题方法。
1、单位“1”×百分之几关键是找单位“1”
2、完成两道复习题。
(2)李强六月份的生活费为255元,比计划节省了15%,节省了多少钱?
二、根据算式填条件。
果园里有苹果树200棵,__________,梨树有多少棵?
(1)200÷20%。
(2)200×20%。
(3)200÷(1+20%)。
(4)200÷(1-20%)。
(5)200×(1-20%)。
三、巩固练习。
3、某件商品2500元,商店先提价10%,后又降价10%,现价是多少元?
9.一捆电线用去20米,剩下的比原来的'75%少5米,这捆电线原来有多少米?
11.一捆电线,用去全长的1,再接上60米,结果比原来长40%,电线原来长多少米。
1,这时乙堆剩下的煤恰4。
四、总结。
最优分数乘法解决问题教案范文(18篇)篇三
解决了达标率问题,下面我们到生物组去看一看。这里有一个还没完成的试验报告。他们遇到什么困难了?什么是发芽率?(师板书)知道了什么是发芽率,怎样计算呢?你又能否像达标率一样把发芽率用公式表示出来?(让同桌带着问题讨论)学生汇报,老师完善板书。
师:现在分3大组完成这个试验报告并汇报结果,看哪一组最快最好。
师:你可以为这次试验作个总结吗?
生:从这次试验可知绿豆的发芽率最高。
生:我从这次试验可知大蒜的发芽率最低。
生:我知道花生的发芽率比大蒜的发芽率高。
(有利于学生对百分数问题的进一步理解与学习。)。
你们知道计算发芽率有什么作用呢?(生答,师小结)。
最优分数乘法解决问题教案范文(18篇)篇四
教学目标:
2、进一步提高学生分析、比较、解答应用题的能力,会求比一个数少百分之的数是多少的问题。
3、进一步体验百分数与实际生活的紧密联系。
教学重点和难点。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、创设情景,生成问题。
老师很高兴和咱们班的同学一起学习关于百分数应用的问题。你们想学么?生说想。好我们先来检验一下你们前面学过的知识。
要求学生口答,学生纷纷举手回答。教师肯定学生的表现,接着说如果老师将这道题的条件变为“今年图书册数增加了12%”,应该怎样分析解答呢?同学们想知道么?这节课我们就来研究它。。
板书课题:比较复杂的百分数应用题。
(设计意图:通过谈话的方式复习前面的知识,引入所要学习的新知识,激情的导入,激发了学生探求新知识的热情。学生跃跃欲试急于去学习。)。
二、探索交流,解决问题。
出示课件。
(1)学生默读题。
(2)教师引导学生观察比较例3与复习题有什么异同?(两道题问题相同,条件不同。)条件不同在哪儿?引导学生多说。
(设计意图:让学生通过比较明白新旧知识的联系,更容易掌握)。
(3)引导学生思考增加了12%是什么意思,是把谁看作单位“1”。使学生明确今年增加的册数相当于原有册数的12%,现在的册数相当于原有册数的1+12%,即112%。,然后小组合作探讨解题方法。组长记录讨论结果。
(4)教师巡视指导。参与到学生中间去。
(5)师生共同交流。各小组派代表说说自己的解题思路。
方法1。
方法2。
(6)教师对学生的进行补充讲解。再让学生板演在黑板上。对学生的做题情况进行评价,适时表扬鼓励。
(7)师生共同总结出两种解答方法。让学生比较一下哪种方法最优。学生纷纷陈述自己的理由。
(8)比较百分数应用题和分数应用题的区别和联系。
相同点:数量关系和解题方法完全相同。
不同点:百分数应用题的数量关系用百分数来表示;分数应用题的数量关系用分数来表示。
(设计意图:让学生经过了思考再进行小组合作更有利于学生的自主学习,体现了新的教学理念并且注意了解题策略的多样化,最优化。)。
三、巩固应用,内化提高。
1、幸福镇去年收粮食300万吨,今年比去年多20%,今年生产粮食多少万吨?
3、思考:如果例3改成:学校图书室现有图书1568册,比原有图书册数增加了12%,图书室原有多少册图书?(这题单位“1”的量不变,要比较的量也不变,例3单位“1”的量是已知量,这题单位“1”的量是未知量。)。
(设计意图:巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习,加深了学生对知识的巩固及迁移。达到灵活运用的目的。)。
四、回顾整理,反思提升。
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了比一个数多(或少)百分之几是多少的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
百分数应用题和分数应用题的思路和方法是一样的,只不过表示形式不一样而已。
板书设计:
例3:方法一:方法二:。
1400+1400×12%1400×(1+12%)。
=1400+168=1400×112%。
=1568(册)=1568(册)。
答:现在图书室有1568册图书。
最优分数乘法解决问题教案范文(18篇)篇五
师:同学们前面学习百分数的意义和写法,还学习了百分数、小数和分数的互化,其实,百分数在日常生活中应用非常广泛,人们经常用百分数来解决问题。
这节课就让我们解决生活中的百分数问题。(板书课题:用百分数解决问题)。
最优分数乘法解决问题教案范文(18篇)篇六
1、理解生活中百分率问题的含义,掌握求百分率的方法。
2、理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高学生解决问题的能力。
3、通过解决生活中简单的实际问题,培养学生数学的应用意识。
最优分数乘法解决问题教案范文(18篇)篇七
1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、提高学生迁移类推和分析、解决问题的能力。
教学重点:
掌握解决此类问题的方法。
教学难点:
理解题中的数量关系。
教学过程:
1、把下面各数化成百分数。
0.631.0870.044
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%
方法二:14121.167=116.7%116.7%-100%=16.7%
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。
练习二十二第3、4题。
教学追记:
求相差率的应用题,是在求比一个数多(少)几分之几的基础上发展的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件没有直接给出,需要根据题里的条件先算出来。教学中,我充分让学生理解这一点,理解了这个道理,对于学生的解题起到了不小的帮助作用。同时,我紧扣线段图,帮助学生理解题意,分析数量关系,再通过讨论学习的方式,让学生自主尝试,并理解两种不同解法的含义。
最优分数乘法解决问题教案范文(18篇)篇八
教学目标:。
1,使学生加深对百分数的认识,能理解发芽率,出粉率,合格率等这些百。
分率的含义.
2,能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数。
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题.
3,培养学生的知识迁移能力和数学的应用意识.
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题.
教学难点:对一些百分率的理解.
教具准备小黑板,口算卡片。
参考的有关数据:。
教学过程。
教学设计。
活动(一)创设情境,提出问题:。
1,口算比赛:(时间:1分钟)。
5/6―1/23/10×2/91―1/44/5÷1/54/5÷4/3。
5/8+3/47/12×4/77/8+1/41/5+1/33/4÷5。
总题数的几分之几)。
2,学生根据自己的口算情况口答"做对的题数占总题数的几分之几做错的题数占总题数的几分之几"。
3,提出问题:能否将"做对的题数占总题数的几分之几"的分数应用题改成一道百分数应用题呢补充(点评)活动(二)相互合作,探究问题:。
(一)初步感知。
1,学生尝试解答各自的"做对的题数占总题数的百分之几"和"做错的题数占总题数的百分之几"的问题.
2,小结:"求一个数是另一个数的百分之几的百分数应用题"与"求一个数是另一个数的几分之几的分数应用题"解法相同,关键是找准单位"1",所不同的是,"求一个数是另一个数的百分之几的百分数应用题"计算的结果要化成百分数.
(二)共同探讨。
2,学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义.
板书学生所举的百分率及其含义.如:。
合格的产品数发芽的个数。
产品总数种子的总数。
的形式,只是分数形式,不是百分数形式,加乘100%就可以积既使分数值不变,又是百分数的形式.
3,尝试解答例题:。
(1)出示课本例1和例2的条件:。
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,。
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒.
学生先独立完成,然后交流,讨论.
学生同桌互出题目,然后小组里交流.
(2)完成第86页的"做一做"。
1,口答:。
(1)2是5的百分之几5是2的百分之几。
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率.
2,判断:。
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%.
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%.
(3)25克盐放入100克水中,盐水的含盐率是25%.
3,课堂作业:。
1,我国鸟类种数繁多,约有1166种.全世界鸟类约有。
8590种.
2,根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答.
教学目标:。
1,使学生加深对百分数的认识,能理解发芽率,出粉率,合格率等这些百。
分率的含义.
2,能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数。
的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题.
3,培养学生的知识迁移能力和数学的应用意识.
教学重点:解答求一个数是另一个数的百分之几的的百分之几的应用题.
教学难点:对一些百分率的理解.
教具准备小黑板,口算卡片。
参考的有关数据:。
教学过程。
教学设计。
活动(一)创设情境,提出问题:。
1,口算比赛:(时间:1分钟)。
5/6―1/23/10×2/91―1/44/5÷1/54/5÷4/3。
5/8+3/47/12×4/77/8+1/41/5+1/33/4÷5。
总题数的几分之几)。
2,学生根据自己的口算情况口答"做对的题数占总题数的几分之几做错的题数占总题数的几分之几"。
3,提出问题:能否将"做对的题数占总题数的几分之几"的分数应用题改成一道百分数应用题呢补充(点评)。
(将"做对的题数占总题数的几分之几"改成"做对的题。
校对并让学生说说自己的口算情况,。
活动(二)相互合作,探究问题:。
(一)初步感知。
1,学生尝试解答各自的"做对的题数占总题数的百分之几"和"做错的题数占总题数的百分之几"的问题.
2,小结:"求一个数是另一个数的百分之几的百分数应用题"与"求一个数是另一个数的几分之几的分数应用题"解法相同,关键是找准单位"1",所不同的是,"求一个数是另一个数的百分之几的百分数应用题"计算的结果要化成百分数.
(二)共同探讨。
2,学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义.
板书学生所举的百分率及其含义.如:。
合格的产品数发芽的个数。
产品总数种子的总数。
3,尝试解答例题:。
(1)出示课本例1和例2的条件:。
例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人,。
例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒.
(2)完成第113页的"做一做"。
1,口答:。
(1)2是5的百分之几5是2的百分之几。
(2)用1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率.
2,判断:。
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%.
(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%.
(3)25克盐放入100克水中,盐水的含盐率是25%.
3,课堂作业:。
1,我国鸟类种数繁多,约有1166种.全世界鸟类约有。
8590种.
2,根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答.
最优分数乘法解决问题教案范文(18篇)篇九
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的.结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出整数乘以不同分数的结果。
教学方法:
师生共同归纳和推理
教学参考书、教科书
教师出示教学板书,请学生计算下列分数乘法运算题。
教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)
教师让学生思考这个例题,并对学生进行提问。
学生自己动手填完课本例题上的方格。
教师提问学生说一说自己是怎样计算的?
教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。
做课本5页试一试,36的 和 分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
整数乘以分数的数学意义:就是求整数的几分之几是多少?
最优分数乘法解决问题教案范文(18篇)篇十
教学目标:。
1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。
3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。
教学重点:。
经历“求一个数的几分之几是多少”的问题的数量关系分析过程。
教学难点:。
掌握“求一个数的几分之几是多少“的解答方法。
教学方法与手段:。
小黑板、多媒体。
教具准备:。
主题图、小组练习纸。
教学过程:。
一、创设情境,生成问题。
师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5。我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)。
师:这是用分数乘法的知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的.学习,揭示并板书课题:解决问题(一)。
二、探索交流,解决问题。
1、从题目里你知道了哪些信息?需要解决的问题又是什么?
2、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。
师出示课本的线段图。
3、你会表示我国人均耕地面积吗?(生动手画图指名板演)。
4、给大家说说你是怎样表示的?
5、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)。
(师出示)“求2500的2/5是多少?“。
6、你们会算吗?动手试试。(指名板演):。
2500x2/5=1000(平方米)。
为什么要这样算?还有其它方法吗?(预设:2500÷5×2)。
结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。
三、巩固应用,内化提高。
1、一头鲸长28米,一个人的身高是鲸体长的2/35。这个人的身高多少米?
2、找出单位“1”,谁能解决,动手试试。
3、列式解决,讲评。
4、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数只。
5、练习四第3题:让学生先找到单位“1”,再独立列式解答。
四、回顾整理,反思提升。
师:这节课你们一定有不少的收获吧,谁能说说?
最优分数乘法解决问题教案范文(18篇)篇十一
1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
2、知识目标:复习分数乘以整数和分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以整数和一个分数乘以另一个分数的结果。
3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
学生能够熟练的计算出分数乘以分数和分数乘以整数的结果。
师生共同归纳和推理
教学参考书、教科书
一、复习导入
教师出示教学板书,请学生计算下列分数乘法运算题。
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。分数乘以整数,整数乘以分子,分母不变。)
二、课堂练习
学生做第10题,让学生计算一个分数的几分之几是多少?注意提醒学生及时约分。
学生做第11题,让学生先计算出分数乘法算式的得数再学会比较分数的大小。
学生做第13题,让学生用整数乘以分数的知识来解决生活中有关分数的生活问题,注意提醒学生认清长度单位。
学生做第14题,教师注意让学生利用分数乘法学会解决生活中实际问题。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
板书设计:
练习二
最优分数乘法解决问题教案范文(18篇)篇十二
1、结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。
2、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。
3、使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。
教学重点:
理解整数乘以分数的意义,并能证确计算。
教学难点:
教学过程。
一、复习导入:
1、2/3×2表示的意思是()。
2、计算分数乘整数时,用分数的()和整数相乘的积作(),分母()。
3、请学生计算下列分数乘法运算题。
1/8×3。
3/10×4。
7/24×12。
二、情境创设。
1、教师让学生思考这个题,并对学生进行提问。
3、教师提问学生说一说自己是怎样计算的?
4、学生自己动手填完课本例题上的方格。
5、怎样表示笑笑的苹果数?
6、教师板书(笑笑:6×1/3=2)。
7、总结分数乘法的意义就是求一个数的几分之几是多少。
8怎么计算呢?6×1/2=6×1/2=36×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。
三、巩固练习:
1、计算8×3/10。
4×3/10。
24×3/8。
2、做课本5页试一试1题,36的1/4和1/6分别是多少?
注意让学生体验求一个整数的几分之几是多少的数学意义。
3、试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算。
四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)。
【板书设计】。
分数乘法(二)。
整数乘以分数的意义:就是求整数的几分之几是多少?
整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。
教学反思:
本节课有以下优点:
1、针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。
2、抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。
文档为doc格式。
最优分数乘法解决问题教案范文(18篇)篇十三
1、使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。
3、培养学生的知识迁移能力和数学的应用意识。
解答求一个数是另一个数的百分之几的的百分之几的应用题。
课件。
旧知:
1、某乡去年原计划造林12公顷,实际造林14公顷,实际造林是原计划的百分之几?
指名学生回答。
指名学生回答。
(一)初步感知。
1、学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。
2、小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。
(二)共同探讨。
2、学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。
板书学生所举的百分率及其含义。如:
3、尝试解答例题:
(1)出示课本例1(1)的条件:
例1:六年级有学生160人,已达到《国家体育锻炼标准》的有120人?
(2)学生提出问题,尝试解答。
1、p86的“做一做”第1、2题。
2、练习二十的第2题。
2、学生谈谈今天所学的知识在我们的日常生活中有什么用?
课堂总结。
学生说说解答求一个数是另一个数的百分之几的百分数应用题的关键是什么。
练习二十的第3、4题。
课后习题。
练习二十的第3、4题。
最优分数乘法解决问题教案范文(18篇)篇十四
3、能正确运用“先约分再计算”的方法进行计算。
能正确运用“先约分再计算”的方法进行计算。
2、请大家想办法解决问题,先自己想一想,没有思路的同学可以同桌交流,也可以看一看书上是怎么解决的。
3、 组织全班交流。 师生一起来分享交流过程。对学生提出的想法,师可以这样提问:你列的这个算式表示什么意义呢?对这个算法,你是怎么理解的,别的同学还有什么问题吗? 教师在学生讨论的过程中,把加法的板书和乘法的.板书有机的结合起来。并让学生理解求几个相同分数的和用乘法计算。
4、练一练:教科书第2页“涂一涂,算一算”。 学生独立完成后,让学生说说自己的思路。 讨论:你能用自己的语言说一说整数乘分数的计算方法吗? 小结:分数与整数想乘,用分数的分子和整数的乘积作分子,分母不变。 练习:教科书“试一试”第1、2题。
5、探讨“先约分再计算”的方法。
出示 6x5/9。让学生独立完成,指名板演。 学生可能出现两种计算方法,如果没有方法二,教师可指导学生看书得到。 教师引导学生比较两种算法,得出“先约分再计算”的方法比较简便。
练习:
(1)教科书“练一练”第1题。
(2)计算
1、教科书第4页“练一练”第2、3、4、题。 学生先独立完成,指名板演,在集体讲评。
3、教科书第4页“数学故事”。 先让学生说说,你从每幅图中得到了哪些信息?如何解决图中提出的问题。
最优分数乘法解决问题教案范文(18篇)篇十五
教学第84页的例3,完成随后的“练一练”和练习十六第5—9题。
1、使学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题。
2、使学生进一步积累解决问题的策略,增强数学应用意识。
一、复习导入
林阳小学去年有24个班级,今年的班级数比去年增加了。今年比去年增加了多少个班级?
独立解答,说说“今年的班级数比去年增加了”的含义及解题思路。
如果把问题改成:“今年一共有多少个班级?”就成了今天我们要研究的新内容了。
二、教学例3
1、出示例3
林阳小学去年有24个班级,今年的班级数比去年增加了。今年一共有多少个班级?
(1)比较复习题与例3的不同。
问题不同:复习题要求“今年比去年增加了多少个班级?”而例3要求“今年一共有多少个班级?”
(2)说说“今年的班级数比去年增加了”的含义。
是哪两个量比较的结果?这两个量比时把哪个量看作单位“1”?单位“1”的是哪个量?
(3)让学生在线段图上表示出今年班级的数量。
(4)要求“今年一共有多少个班级?”可以先算什么?并列出综合算式。
板书:24+24,说说24的含义,独立解答。
(5)(5)想一想,还可以怎样计算?
板书:24(1+),说说(1+)的含义,独立解答。
(6)小结:怎样解答这类应用题?
三、巩固练习
1、做练一练的第1题。
先说一说可以怎样想,再独立解答。
2、做练习十六的第5题。
独立完成,可以先画图思考,再列式解答。
比较两题的解法有什么联系和区别。
3、做练习十六的第8题。
让学生先画线段图表示两题中的已知条件和所求问题,再根据线段图说说这两小题中的数量关系有什么不同,最后再列式解答。
比较两题的解法有什么联系和区别。
4、做练习十六的第9题。
先让学生适当整理题中的条件和问题,再引导学生根据需要解决的问题选择合适的条件解答相应的问题。
比较两题的解法有什么联系和区别。
四、全课小结,揭示课题。
通过这节课的学习,你有什么收获?在解题时要注意什么?
结合学生的回答,揭题板题。
五、课堂作业
做练习十六的第6、7题。
最优分数乘法解决问题教案范文(18篇)篇十六
1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。
2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。
4、使学生理解倒数的意义,掌握求倒数的方法。 单元重点: 分数乘法的意义和计算法则。
单元难点:
1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。
2、分数乘法计算法则的推导。
授课课时:11课时
第一课时分数乘整数
教学内容:人教版六年级上册《分数乘法》教材第2、3页。
授课时间:1.2
教学目标:
2. 通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。 教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。 教学难点:引导学生总结分数乘整数的计算法则。发现规律,创造规律。
最优分数乘法解决问题教案范文(18篇)篇十七
在计算的过程中,能约分的要先约分,然后再乘。
发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。
一、设疑激趣:
1.下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
2.计算下面各题,说说怎样算?
++=++=
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==33=
3=这个算式表示什么?为什么可以这样计算?
教师板书++=3=
3.出示:(课件1)
这道题目又该怎样计算呢?
二、自主探索:
1.出示例1,读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、学生交流、质疑:
1.学生汇报,并说一说你是怎样想的?
方法a.++===(块)
方法b.3=++====(块)
2.比较这两种方法,有什么联系和区别?
(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)
教师根据学生的回答,板书++=3
3.为什么可以用乘法计算?
(加法表示3个相加,因为加数相同,写成乘法更简便。)
4.3表示什么?怎样计算?
(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)
5.提示:为计算方便,能约分的要先约分,然后再乘。
(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)
四、归纳、概括:
1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)
2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)
(根据学生的回答,教师进行板书)
五、巩固、发展
1.巩固意义:
(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)
(2)改写算式:
+++=()()
+++++++=()()
(3)只列式不计算:3个是多少?5个是多少?
2.巩固法则:
(1)计算(说一说怎样算)
462148
(说一说,为什么先约分再相乘比较简便?以8为例来说明)
(2)应用题:
(3)对比练习:
a.一条路,每天修千米,4天修多少千米?
b.一条路,每天修全路的,4天修全路的几分之几?
3.发展提高:
(1)出示(课件1):说说怎样想?
(2)出示(课件2):说说怎样想?
最优分数乘法解决问题教案范文(18篇)篇十八
教学目标:
1、掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、提高学生迁移类推和分析、解决问题的能力。
教学重点:
教学难点:
理解题中的数量关系。
教学过程:
1、把下面各数化成百分数。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%。
方法二:14121.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14。
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。