通过阅读范文,我们可以更好地理解老师的要求,从而更好地完成作文任务。以下是小编为大家准备的范文范本,希望能对大家的写作提供一些有益的影响和帮助。
植树问题评课稿(通用14篇)篇一
植树问题是一个较为复杂的问题解决,这一内容具有很强的数学思维和很强的探究空间,既需要老师的引领,也需要学生的探究。
孙老师本节课的教学目标是关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段图来发现栽树的棵数和间隔数之间的关系,再用发现的规律解决实际问题。孙老师上课的思路非常清晰,以创景引题---先学后教---展示反馈三个模块为主线,开展了一系列的教学活动。纵观本节课,亮点之处有:。
新课开始,孙老师就和学生玩起了剪纸条的游戏,这个游戏一下子吸引了学生的注意力,然后在游戏中找规律,使学生把学习中复杂的问题简单化,注重“优化”的思想,学生的数学学习是学生以生活经验为基础对数学知识的一种解读。当学习材料与学生已有的生活经验相联系时,容易消除数学的枯燥感,使学生学习更主动。师生之间的语言互动与游戏巧妙的结合,使学生一开始就明白了本节课的教学内容,运用找规律解决植树问题。
孙老师在上这节课时,非常成功的应用小老师来教其他学生。教师首先让学生根据自学提示进行独立思考,然后对不懂的问题进行小组讨论交流来完成,之后让小老师上台,对自习提示中的问题一一进行讲解,在讲解的过程中并且让学生对不懂的问题进行提问,让小老师来解答。孙老师这样做,充分的锻炼了学生各方面的能力,如果能长期坚持,这样培养出来的学生一定会很优秀的。
做完练习后,为了进一步让学生掌握规律,理解段数与点数的关系,孙老师出示了这样一个题目“同学们在全长100米的小路一边植树,每隔5米种一棵(两端都栽),一共需要多少棵树苗?”,待学生解决完这个问题之后,孙老师又追加了一问,“若路的两边都载,共需要准备多少棵树苗?”使学生的思维慢慢升华,逐步提高。
培养学生应用数学知识解决生活中的问题的能力是新课程中明确指出的培养目标之一。本节课一开始教师就结合剪纸条,创造性地设计植树方案问题,进而比较段数与点数之间的关系。例题结束后,孙老师紧接着设计了一道有坡度的题(两边都要栽的问题),在学生自主探究和合作交流解决问题的过程中,孙老师适当的点拨与引导,这样的过程给了学生多次尝试,修正的机会,打破了课堂内外的局限,将课堂教学延伸到课外应用。最后给学生充分反馈本节课知识的空间。
在学生已掌握“点数=段数+1,段数=点数-1”的规律的基础上,孙老师巧妙的引导学生解决了逆向思考“总长=段数x间距”的问题,学生在头脑里建立了数学知识模型,达到了举一反三,灵活应用的效果,给学有余力的学生更广阔的空间。
当然,本节课也有不足之处,主要体现在:
孙老师可以从生活中抽象出这种植树的模型,这样让学生感受到植树、折纸、路灯等不相关联的事件中存在着内在的本质的联系,使数学问题生活化,直切本节课的主旨,直接突破难点。
总之孙老师的这节课,思路清晰,条理清楚,教学环节环环相扣,整堂课节奏紧凑,一环紧扣一环,使学生学有所获,学生的知识在不断的内化中升华。
以上只是我的一些单纯的看法,说的不到之处,还请见谅。
植树问题评课稿(通用14篇)篇二
今天我主评的课是查老师执教的《植树问题》的第一课时,植树问题是人教版《义务教育课程标准实验教科书》四年级下册第八单元《数学广角》的教学内容。这一单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再利用发现的规律来解决生活中的一些简单实际问题。植树问题是情况较为复杂的问题,解决这一教学内容本身具有很高的`数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。查老师执教的这节课的目的就是要向学生渗透把复杂问题简单化的数学思想。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法,植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段,由于路线的不同、植树要求的不同,路线被分成的段数和植树的棵数之间的关系也就不同,它们中间都隐藏着总数和间隔数之间的关系问题,不同的情况,总数和间隔数之间的关系也就不同。如何引导学生发现、理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题,是查老师执教的这一堂课的主要教学目的。查老师的这节课无论是在教材的驾驭上,在教学方法的选择上,还是在教学理念的更新上,及在教学模式的探讨上都给我留下了深刻的印象,这就是我在听课这么长的时间后仍选择主评这节课的主要原因。下面就从以下几个方面谈谈我听完这节课后的几点感受。
教学内容是教学活动的素材和依托,是实现教学目标的重要保证,教学内容安排的合理可以有效地提升教学目标,达到理想的教学效果。植树问题可分为两大方面的内容,一是在直线上植树,二是在封闭图形上植树。直线上植树就有三种不同情况:两端都种、两端都不种、一端种一端不种,查老师根据四年级学生的认知实际,从学生的实际情况出发,所有的学习材料都来源于学生的生活实际,降低了学生认知的起点,激发了学习的兴趣,同时选定将两端都种的情况作为第一课时教学目标来完成,定位很准确,关注了学生学习的起点,符合中年级学生的认知规律。如果一节课将直线上植树的三种情况一起来探究学习,必然会造成知识容量大,学生学得累,教师教得累,教学效果也不如意的尴尬后果。
导入新课时,查老师让学生猜这样的一个谜语:两棵小树十个杈,能写会算不说话。当学生猜出是“手”后,查老师让学生看自己的手掌,然后告诉学生,我们每个人的手里都蕴藏着许多有趣的数学知识,张开小手,五个手指中间有四个间隔,在数学上把这个“4”叫“间隔数”,五个手指就表示五棵树,这就是我们今天要研究的有关植树问题的知识,从而很自然地导入到新课。这样的导入,既新颖有趣,激发了学生学习新课的热情,又使学生充分地体会到数学问题来源于生活。在实践应用环节中查老师让学生说一说生活中还有哪些问题类似于植树问题这样的现象,使学生再次感受到生活中处处有数学。在练习设计中,也是通过出示图片让学生用数学的眼光观察生活,如8个同学排队有几个间隔,6面彩旗有几个间隔,一件衬衫钉了8粒纽扣有几个间隔等内容,让学生利用所学的规律解决生活中的数学问题,使学生进一步感受到数学知识源于生活,应用于生活,从而使学生深刻地感受到数学的应用价值,有效地激发了学生的学习兴趣。
本节课的教学目标是理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题。查老师在教学过程中,自始至终都围绕着这一目标展开教学。首先,让学生通过自主探索、交流,归纳、总结等方法,使学生发现在两端都栽的情况下,植树问题的“棵树=间隔数+1”,而且,让学生说一说为什么要加上1,这个“1”表示的是什么,从而使学生明确这个“1”就是指末端的那棵树,明确了规律,目的是为了让学生正确地运用这一规律解决类似的数学问题,而植树问题的题型又是灵活多变的,生活中的许多问题都可以归结为用植树问题的方法来解决。因此,查老师在学生解决问题的过程中,十分重视学生对教学目标的理解和灵活运用。如练习这样一道题:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?当学生独立解答汇报后,查老师不是就此结束了事,而是再让学生说说每道算式的意义,12÷2=6(个)表示有6个间隔,6+1=7(个)表示一共有7个车站,然后,再进一步提出问题帮助学生分析、理解、掌握植树问题的规律。相邻的两站距离在植树问题中表示什么?求一共有几个车站就是求什么?这道题的关键是必须要知道先求出什么?怎么求?在一问一答中,学生的思路更加清晰,对植树问题这一规律有了更深一层的理解和把握,运用起来也就得心应手了。
数学思想方法就是数学的灵魂,植树问题的目的就是向学生渗透复杂问题从简单方法入手的思想。本节课的重点是发现、理解和掌握解决植树问题的规律,即植树问题的公式推导。在这一环节的教学过程中,查老师首先出示的是这样的一道例题:同学们在全长100米的小路一边栽树,每隔5米栽一棵(两端要栽)。一共要多少棵树苗?在学生自主探究独立解答完成这道题后,查老师为了能让学生在此基础上探索发现植树问题的规律,用课件出示线段图,一棵树对应一个间隔,一棵树对应一个间隔,这样一个一个的出示,很麻烦,不利于渗透把复杂问题简单化的数学思想。于是,查老师就把刚才的例题中的100米的小路改成20米、25米、30米,在总长发生变化而间隔的长度不变的情况下,让学生利用手中的学具摆一摆,数一数,通过动手操作,观察,再用多媒体课件进行演示,使学生很快就能发现在两端都栽的情况下,间隔数总是比所栽的棵数少1,从而得出“间隔数+1=棵数”这一规律,并且还明确了为什么要加1,这个“1”表示的是什么的道理。通过教师的有效引领和学生的自主探究,使学生感受到在数学学习中,可以把复杂的问题转化为简单的问题来解决,从而有效地渗透了复杂问题简单化的数学思想。
查老师是我们铜陵市的名师,名师自有名师的风范,查老师在课堂上极具亲和力,教学中,查老师用女性特有的细致和温柔启发和激励学生,既关注细节,又注重评价,使她的课堂激情洋溢,精彩纷呈,掌声不断,高潮迭起。
(1)、关注学生学习过程中的每一个细节。
细节决定成败,关注细节就是要关注学生课堂学中习中的每一个细枝末节。查老师在这堂课中,特别关注学生的学习过程和思维过程,如,学生在独立练习时,查老师首先让学生判断是否属于两端都栽的问题,并且提问你是从哪个地方看出来的,既关注学生的学习结果,更关注学生的思维过程;当学生在练习时,查老师还不断地巡视,发现学生在解题过程中遇到了困难,就及时地提示学生用画线段图的方法,进行分析,给学生以解题方法的提示。另外,查老师还特别关注学生学习习惯方面的每一个细节,哪怕是与这节课教学内容无关的细节,查老师也十分关注。如,当学生回答问题语句不完整时,查老师要求学生要把一句话说完整;当学生板演算式忘记写单位名称时,查老师提醒学生注意书写算式的完整性;当学生板演不工整时,查老师又提醒学生书写时要注意规范工整;当学生口头答题忘记说答语时,查老师还是及时地提醒学生要注意答题的完整性。查老师对教学中的每一个细节都如此地关注,无疑为我们在关注细节这方面做出了榜样。
(2)注重评价方式的多样化。
在查老师的课堂上,始终洋溢着民主平等的教学氛围,特别是查老师敢于放下架子,站在与学生平等的高度,注重对学生的评价,拉近了老师和学生的距离,融洽了师生之间的感情,激发了学生的学习热情和学习兴趣,使得学生在学习过程中能够独立思考,大胆发言,积极创新,学习氛围浓郁。教学中,查老师善于把握学生的心理,对学生实施有效的评价,查教师对学生的评价,既关注学生知识与技能的理解和掌握,又关注学生情感与态度的形成和发展;既关注了学生的学习结果,又时刻关注了学生在学习过程中的发展变化,评价方式多样化。当学生回答问题正确时,查老师就用激励性的语言从正面加以肯定;当学生回答问题精彩时,查老师就让全体学生用热烈的掌声给予鼓励;当学生回答问题非常完整时,查老师不仅用语言进行表扬,并且还投以赞许的目光;当学生回答问题不全面时,查老师先表扬其正确的部分,再委婉地指出其存在的不足,有效的维护了学生的自尊。
本节课练习设计紧扣中心,突出了知识的强化应用,把应用意识的培养和思维的训练贯穿始终,努力让学生利用所学知识解决类似植树问题的不同题型。在题型设计上也由易到难,遵循了循序渐进的原则。有求棵树的,如:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?有求总长的,如:园林工人在公路一侧栽树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?有求每段长度的,如:广场上的大钟5时敲5下,8秒钟敲完。12时敲12下,需要多长时间?这些都较好地体现了思维的训练和应用意识的培养。
值得商榷的是:
1、在探索植树问题的规律时,同学们探索的是在间隔的长度不变,而总长不断变化的情况下,得出的“间隔数+1=棵数”的这一规律。可否再让学生通过摆一摆、画一画,在总长不变而间隔的长度发生变化的情况下,得出植树问题的规律。如,设总长为20米,间隔的长度可分别为1米、2米、4米、5米、10米、20米,让学生多次从不同结果中发现棵数与段数之间的关系,应用不完全归纳法得出间隔数和棵树之间也存在着同样的规律,通过对不同条件的亲历探讨,从而使学生坚定了这一规律的正确性。
2、课堂教学的开放程度不够,例题可否设计为在20米长的小路一边种树,怎样种?需要几棵数?让学生设计植树的方案。使学生在老师提供的这一开放性的、富有挑战性的题目中,大胆设想,开放思维,充分展示自己的聪明才智,从而体验成功和快乐。
以上两点只是我个人一点不成熟的建议,如有不妥,请各位老师批评指正。
植树问题评课稿(通用14篇)篇三
各位领导,各位老师:
大家下午好!
今天我主评的课是查老师执教的《植树问题》的第一课时,植树问题是人教版《义务教育课程标准实验教科书》四年级下册第八单元《数学广角》的教学内容。这一单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再利用发现的规律来解决生活中的一些简单实际问题。植树问题是情况较为复杂的问题,解决这一教学内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。查老师执教的这节课的目的就是要向学生渗透把复杂问题简单化的数学思想。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法,植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段,由于路线的不同、植树要求的不同,路线被分成的段数和植树的棵数之间的关系也就不同,它们中间都隐藏着总数和间隔数之间的关系问题,不同的情况,总数和间隔数之间的关系也就不同。如何引导学生发现、理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题,是查老师执教的这一堂课的主要教学目的。查老师的这节课无论是在教材的驾驭上,在教学方法的选择上,还是在教学理念的更新上,及在教学模式的探讨上都给我留下了深刻的印象,这就是我在听课这么长的时间后仍选择主评这节课的主要原因。下面就从以下几个方面谈谈我听完这节课后的几点感受。
1、联系学生实际,合理安排教学内容。
教学内容是教学活动的素材和依托,是实现教学目标的重要保证,教学内容安排的合理可以有效地提升教学目标,达到理想的教学效果。植树问题可分为两大方面的内容,一是在直线上植树,二是在封闭图形上植树。直线上植树就有三种不同情况:两端都种、两端都不种、一端种一端不种,查老师根据四年级学生的认知实际,从学生的实际情况出发,所有的学习材料都来源于学生的生活实际,降低了学生认知的起点,激发了学习的兴趣,同时选定将两端都种的情况作为第一课时教学目标来完成,定位很准确,关注了学生学习的起点,符合中年级学生的认知规律。如果一节课将直线上植树的三种情况一起来探究学习,必然会造成知识容量大,学生学得累,教师教得累,教学效果也不如意的尴尬后果。
2、联系生活实际,创设有效问题情境。
导入新课时,查老师让学生猜这样的一个谜语:两棵小树十个杈,能写会算不说话。当学生猜出是“手”后,查老师让学生看自己的手掌,然后告诉学生,我们每个人的手里都蕴藏着许多有趣的数学知识,张开小手,五个手指中间有四个间隔,在数学上把这个“4”叫“间隔数”,五个手指就表示五棵树,这就是我们今天要研究的有关植树问题的知识,从而很自然地导入到新课。这样的导入,既新颖有趣,激发了学生学习新课的热情,又使学生充分地体会到数学问题来源于生活。在实践应用环节中查老师让学生说一说生活中还有哪些问题类似于植树问题这样的现象,使学生再次感受到生活中处处有数学。在练习设计中,也是通过出示图片让学生用数学的眼光观察生活,如8个同学排队有几个间隔,6面彩旗有几个间隔,一件衬衫钉了8粒纽扣有几个间隔等内容,让学生利用所学的规律解决生活中的数学问题,使学生进一步感受到数学知识源于生活,应用于生活,从而使学生深刻地感受到数学的应用价值,有效地激发了学生的学习兴趣。
3、教学目标的把握准确到位。
总结。
等方法,使学生发现在两端都栽的情况下,植树问题的“棵树=间隔数+1”,而且,让学生说一说为什么要加上1,这个“1”表示的是什么,从而使学生明确这个“1”就是指末端的那棵树,明确了规律,目的是为了让学生正确地运用这一规律解决类似的数学问题,而植树问题的题型又是灵活多变的,生活中的许多问题都可以归结为用植树问题的方法来解决。因此,查老师在学生解决问题的过程中,十分重视学生对教学目标的理解和灵活运用。如练习这样一道题:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?当学生独立解答汇报后,查老师不是就此结束了事,而是再让学生说说每道算式的意义,12÷2=6(个)表示有6个间隔,6+1=7(个)表示一共有7个车站,然后,再进一步提出问题帮助学生分析、理解、掌握植树问题的规律。相邻的两站距离在植树问题中表示什么?求一共有几个车站就是求什么?这道题的关键是必须要知道先求出什么?怎么求?在一问一答中,学生的思路更加清晰,对植树问题这一规律有了更深一层的理解和把握,运用起来也就得心应手了。
4、有效地渗透了复杂问题简单化的数学思想。
数学思想方法就是数学的灵魂,植树问题的目的就是向学生渗透复杂问题从简单方法入手的思想。本节课的重点是发现、理解和掌握解决植树问题的规律,即植树问题的公式推导。在这一环节的教学过程中,查老师首先出示的是这样的一道例题:同学们在全长100米的小路一边栽树,每隔5米栽一棵(两端要栽)。一共要多少棵树苗?在学生自主探究独立解答完成这道题后,查老师为了能让学生在此基础上探索发现植树问题的规律,用课件出示线段图,一棵树对应一个间隔,一棵树对应一个间隔,这样一个一个的出示,很麻烦,不利于渗透把复杂问题简单化的数学思想。于是,查老师就把刚才的例题中的100米的小路改成20米、25米、30米,在总长发生变化而间隔的长度不变的情况下,让学生利用手中的学具摆一摆,数一数,通过动手操作,观察,再用多媒体课件进行演示,使学生很快就能发现在两端都栽的情况下,间隔数总是比所栽的棵数少1,从而得出“间隔数+1=棵数”这一规律,并且还明确了为什么要加1,这个“1”表示的是什么的道理。通过教师的有效引领和学生的自主探究,使学生感受到在数学学习中,可以把复杂的问题转化为简单的问题来解决,从而有效地渗透了复杂问题简单化的数学思想。
5、关注细节,注重评价。
查老师是我们铜陵市的名师,名师自有名师的风范,查老师在课堂上极具亲和力,教学中,查老师用女性特有的细致和温柔启发和激励学生,既关注细节,又注重评价,使她的课堂激情洋溢,精彩纷呈,掌声不断,高潮迭起。
(1)、关注学生学习过程中的每一个细节。
细节决定成败,关注细节就是要关注学生课堂学中习中的每一个细枝末节。查老师在这堂课中,特别关注学生的学习过程和思维过程,如,学生在独立练习时,查老师首先让学生判断是否属于两端都栽的问题,并且提问你是从哪个地方看出来的,既关注学生的学习结果,更关注学生的思维过程;当学生在练习时,查老师还不断地巡视,发现学生在解题过程中遇到了困难,就及时地提示学生用画线段图的方法,进行分析,给学生以解题方法的提示。另外,查老师还特别关注学生学习习惯方面的每一个细节,哪怕是与这节课教学内容无关的细节,查老师也十分关注。如,当学生回答问题语句不完整时,查老师要求学生要把一句话说完整;当学生板演算式忘记写单位名称时,查老师提醒学生注意书写算式的完整性;当学生板演不工整时,查老师又提醒学生书写时要注意规范工整;当学生口头答题忘记说答语时,查老师还是及时地提醒学生要注意答题的完整性。查老师对教学中的每一个细节都如此地关注,无疑为我们在关注细节这方面做出了榜样。
(2)注重评价方式的多样化。
在查老师的课堂上,始终洋溢着民主平等的教学氛围,特别是查老师敢于放下架子,站在与学生平等的高度,注重对学生的评价,拉近了老师和学生的距离,融洽了师生之间的感情,激发了学生的学习热情和学习兴趣,使得学生在学习过程中能够独立思考,大胆发言,积极创新,学习氛围浓郁。教学中,查老师善于把握学生的心理,对学生实施有效的评价,查教师对学生的评价,既关注学生知识与技能的理解和掌握,又关注学生情感与态度的形成和发展;既关注了学生的学习结果,又时刻关注了学生在学习过程中的发展变化,评价方式多样化。当学生回答问题正确时,查老师就用激励性的语言从正面加以肯定;当学生回答问题精彩时,查老师就让全体学生用热烈的掌声给予鼓励;当学生回答问题非常完整时,查老师不仅用语言进行表扬,并且还投以赞许的目光;当学生回答问题不全面时,查老师先表扬其正确的部分,再委婉地指出其存在的不足,有效的维护了学生的自尊。
6、练习设计层次分明,训练扎实有效。
本节课练习设计紧扣中心,突出了知识的强化应用,把应用意识的培养和思维的训练贯穿始终,努力让学生利用所学知识解决类似植树问题的不同题型。在题型设计上也由易到难,遵循了循序渐进的原则。有求棵树的,如:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?有求总长的,如:园林工人在公路一侧栽树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?有求每段长度的,如:广场上的大钟5时敲5下,8秒钟敲完。12时敲12下,需要多长时间?这些都较好地体现了思维的训练和应用意识的培养。
值得商榷的是:
1、在探索植树问题的规律时,同学们探索的是在间隔的长度不变,而总长不断变化的情况下,得出的“间隔数+1=棵数”的这一规律。可否再让学生通过摆一摆、画一画,在总长不变而间隔的长度发生变化的情况下,得出植树问题的规律。如,设总长为20米,间隔的长度可分别为1米、2米、4米、5米、10米、20米,让学生多次从不同结果中发现棵数与段数之间的关系,应用不完全归纳法得出间隔数和棵树之间也存在着同样的规律,通过对不同条件的亲历探讨,从而使学生坚定了这一规律的正确性。
2、课堂教学的开放程度不够,例题可否设计为在20米长的小路一边种树,怎样种?需要几棵数?让学生设计植树的方案。使学生在老师提供的这一开放性的、富有挑战性的题目中,大胆设想,开放思维,充分展示自己的聪明才智,从而体验成功和快乐。
以上两点只是我个人一点不成熟的建议,如有不妥,请各位老师批评指正。
植树问题评课稿(通用14篇)篇四
x月x日校本教研中听了x老师讲的植树问题,“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。x老师利用学生的动手操作,小组活动等形式向学生渗透复杂问题从简单入手的思想,明确了植树问题中两端都栽情况的解决问题,教学效果良好。
1、导入新课的形式新颖,教师利用猜谜语的形式导入,激发学生兴趣,在伸出双手,找出手指之间的间隔,理解间隔的概念,以及间隔数,将复杂的问题形象化,学生易学、易懂,开了一个好头。
2、x老师上课的思路比较清晰,她先提炼出数学模型(间隔数+1=棵数),最后将这一数学模型应用与生活实际。整堂课节奏紧凑,层层深入,学生在愉悦的'氛围中引发了乐学的动机,在开放的课堂中提供了乐学条件,在活动的氛围中增加了乐学的体验。在上课过程中,“猜想到验证”的学生学习过程一直贯穿着整节课中。
3、课堂教学体现系统性。x老师能灵活构建知识系统,注重教学内容的整体处理。能活用教材,让资源启迪探究。激发学生探究的欲望。通过例题,让学生比较系统地建立植树问题中“两端都要种”的情况。
4、课堂练习设计合理,如采用表格的形式出现不同的已知的条件,解决不同的问题,让学生通过解决问题,感受植树问题服务于生活,同时提高了学生解决实际问题的能力,更激发学生学习数学的兴趣。
5、x老师还注重了利用例题的教学进行了归纳与总结,经过老师与学生的共同研究交流,总结出了解决问题的方法,有利于学生进一步的学习。这节课充分体现了老师与学生、教法与学法的和谐。
植树问题评课稿(通用14篇)篇五
今天听了梁老师的植树问题一课,对我的启发很大。值得学习的地方很多。
1、开课的导入采用手指谜语,激发了学生学习兴趣,引出手指后,有利用手指帮学生初步理解间隔的意思,很直观。但这里出现间隔长有些早。
2、情景问题出示后,用选择题的形式借助直观图帮助学生理解两端都栽的意思,形象直观学生理解起来很容易。
3、教师质疑问题及时且很有数学的味道。如帮工人想象办法,隔几米栽一棵,激发学生创造性思维,很好的理解了等距离的含义。
4、体现学生动手操作合作探究的教学理念。要求明确、准备充分,对四年级学生来说学生桌的还是很好的。
5、教师表格的设计很方便学生发现诸多的数学问题。比单纯的图形要好找规律好表达。但这里讲解交流时,如能借助图形帮助学生理解从数字中发现的规律的话,学生对其中的数量关系的理解会更容易,从而灵活的应用数量关系解决问题。
6、练习中对比练习及时出现,培养了学生良好的审题习惯。但对两边与两端的区别我认为更加直观一些会好些,借助教室两边加以解释。
7、练习紧扣本节教学目标,形式多样,尤其选择问题我认为能较好的帮助学生理解其中的数量关系。
8、歌谣的结尾给本节课画了个圆满的句号。
植树问题评课稿(通用14篇)篇六
植树问题是一个较为复杂的问题解决,这一内容具有很强的数学思维和很强的探究空间,既需要老师的引领,也需要学生的探究。
郎老师本节课的教学目标是关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过在20厘米尺子上摆小棒(不同间隔长)来发现栽树的棵数、间隔数、间隔长、总长之间的关系,再用发现的规律解决实际问题。郎老师上课的思路非常清晰,以创景引题---先学后教---巩固提升三个模块为主线,开展了一系列的教学活动。纵观本节课,亮点之处有:。
新课开始,郎老师就和学生玩起了猜谜、手指夹铅笔的游戏,这个游戏一下子吸引了学生的注意力,然后在游戏中找规律,使学生把学习中复杂的问题简单化,注重“优化”的思想,学生的数学学习是学生以生活经验为基础对数学知识的一种解读。师生之间的语言互动与游戏巧妙的结合,使学生一开始就明白了本节课的`教学内容,运用找规律解决植树问题。
做完练习后,为了进一步让学生掌握规律,理解间隔数与棵数的关系,郎老师出示了这样一个题目“同学们在全长100米的小路一边植树,每隔5米种一棵(两端都栽),一共需要多少棵树苗?”,待学生解决完这个问题之后,郎老师又进行对比提升,“如果路的两边都载,共需要多少棵树苗?”使学生的思维慢慢升华,逐步提高。
教师要提醒每一步算出来的单位名称。
星期五,很荣幸被学校派往xx参加片区教学研讨活动。听了李老师执教的《植树问题》一课,颇有心得,下面就这两节课谈谈自己的心得与看法。
“数学来源于生活,而又服务于生活。”在教学开始,出示生活中的植树问题,充分激发学生的学习兴趣,让学生感受到数学就在我们身边。紧接着老师又引导学生寻找生活中的间隔,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,使学生深深地体会到数学的价值与魅力。
植树问题的思维有一定的复杂性,对于刚接触植树问题的五年级学生来说,则更有一定的难度了。李老师让学生通过直观的观察初步感知植树问题的三种情况:两端都种,只种一端,两端都不种。王老师则适时引导学生借用画图的方法去帮助学生理解。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。等学生找到规律后再解决这类问题就简单多了。
植树问题是数学中一个独立的单元,其内容和生活联系非常密切。这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。在此,李老师设计了一道数字较大的问题,让学生通过画图来解决,在画图过程中学生就会发现这样没法解决。从而启发学生可以自己选择数字小的来画一画。从而让学生领悟解决复杂问题要先想简单的。从而化繁为简,步步深入。整个教学过程中,学生经历了猜一猜,画一画,算一算等多种学习形式,自主探究出规律。李老师则通过列表让学生去算一算,然后让学生通过观察发现规律。这些活动培养了学生的动手操作能力,自主探究能力。在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型。
1、课上的非常顺利,效果也不错。但总觉得有些程序化,在引导学生思考和操作的过程中,对学生规定的有些死。如果在探究两种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
2、通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,突出“分隔问题”,以“植树问题”为背景通过适当的教学手段帮助学生清楚地认识到路灯问题、排队问题、锯木问题、爬楼问题等都与“植树问题”有着相同的数学结构,让学生建构相应的数学模式。
植树问题评课稿(通用14篇)篇七
植树问题是一个较为复杂的问题解决,这一内容具有很强的数学思维和很强的探究空间,既需要老师的引领,也需要学生的探究。
郎老师本节课的。
教学。
目标是关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过在20厘米尺子上摆小棒(不同间隔长)来发现栽树的棵数、间隔数、间隔长、总长之间的关系,再用发现的规律解决实际问题。郎老师上课的思路非常清晰,以创景引题---先学后教---巩固提升三个模块为主线,开展了一系列的教学活动。纵观本节课,亮点之处有:。
新课开始,郎老师就和学生玩起了猜谜、手指夹铅笔的游戏,这个游戏一下子吸引了学生的注意力,然后在游戏中找规律,使学生把学习中复杂的问题简单化,注重“优化”的思想,学生的数学学习是学生以生活经验为基础对数学知识的一种解读。师生之间的语言互动与游戏巧妙的结合,使学生一开始就明白了本节课的教学内容,运用找规律解决植树问题。
做完练习后,为了进一步让学生掌握规律,理解间隔数与棵数的关系,郎老师出示了这样一个题目“同学们在全长100米的小路一边植树,每隔5米种一棵(两端都栽),一共需要多少棵树苗?”,待学生解决完这个问题之后,郎老师又进行对比提升,“如果路的两边都载,共需要多少棵树苗?”使学生的思维慢慢升华,逐步提高。
教师要提醒每一步算出来的单位名称。
植树问题评课稿(通用14篇)篇八
星期五,很荣幸被学校派往xx参加片区教学研讨活动。听了李老师执教的《植树问题》一课,颇有心得,下面就这两节课谈谈自己的心得与看法。
“数学来源于生活,而又服务于生活。”在教学开始,出示生活中的植树问题,充分激发学生的学习兴趣,让学生感受到数学就在我们身边。紧接着老师又引导学生寻找生活中的间隔,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,使学生深深地体会到数学的价值与魅力。
植树问题的思维有一定的复杂性,对于刚接触植树问题的五年级学生来说,则更有一定的难度了。李老师让学生通过直观的观察初步感知植树问题的三种情况:两端都种,只种一端,两端都不种。王老师则适时引导学生借用画图的方法去帮助学生理解。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。等学生找到规律后再解决这类问题就简单多了。
植树问题是数学中一个独立的单元,其内容和生活联系非常密切。这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。在此,李老师设计了一道数字较大的问题,让学生通过画图来解决,在画图过程中学生就会发现这样没法解决。从而启发学生可以自己选择数字小的来画一画。从而让学生领悟解决复杂问题要先想简单的。从而化繁为简,步步深入。整个教学过程中,学生经历了猜一猜,画一画,算一算等多种学习形式,自主探究出规律。李老师则通过列表让学生去算一算,然后让学生通过观察发现规律。这些活动培养了学生的动手操作能力,自主探究能力。在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型。
1、课上的非常顺利,效果也不错。但总觉得有些程序化,在引导学生思考和操作的过程中,对学生规定的有些死。如果在探究两种栽树方法的规律时,再大胆的放手让学生自主的去探究,效果可能会更好些。
2、通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,突出“分隔问题”,以“植树问题”为背景通过适当的教学手段帮助学生清楚地认识到路灯问题、排队问题、锯木问题、爬楼问题等都与“植树问题”有着相同的数学结构,让学生建构相应的数学模式。
植树问题评课稿(通用14篇)篇九
本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第3课时,探讨封闭图形的植树问题(如果是矩形,每边可看作一端种另一端不种)。
1、建立“棵数=间隔数”的数学模型,解决简单的实际问题。
2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。
3、体会数学模型的生活意义与作用,体验到学习的喜悦。
建立“树的棵数=间隔数”的数学模型
为什么“树的棵数=间隔数”?
……
在一条20米路的一侧种树(两端都种),每2米种一棵,共需种几棵?
在一条20数路的一侧种树(两端都不种),每2米种一棵,共需种几棵?
……
在一条20米路的一侧种树(一端种),每2米种一棵,共需种几棵?
1、揭题:植树问题。
2、呈现问题,请学生解决。
3、反馈解法,说说什么情况下选择什么方法。
用围棋摆一个正方形,每边摆7个,一共需要多少围棋?
1、议:7×4=28对不对?
2、根据要求及图形,用自己的方法解决。
3、反馈各种解法,说说自己的方法的怎么避免重复计数的?
4、议:(7-1)×4的理由是什么?
1、完成p121做一做-1,3。
2、完成p121做一做-2,并讨论最多的情况。
3、画图完成第3题。
植树问题评课稿(通用14篇)篇十
5月13日校本教研中听了葛老师讲的植树问题,“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。葛老师利用学生的动手操作,小组活动等形式向学生渗透复杂问题从简单入手的思想,明确了植树问题中两端都栽情况的解决问题,教学效果良好。
1、导入新课的形式新颖,教师利用猜谜语的形式导入,激发学生兴趣,在伸出双手,找出手指之间的间隔,理解间隔的概念,以及间隔数,将复杂的问题形象化,学生易学、易懂,开了一个好头。
2、葛老师上课的思路比较清晰,她先提炼出数学模型(间隔数+1=棵数),最后将这一数学模型应用与生活实际。整堂课节奏紧凑,层层深入,学生在愉悦的氛围中引发了乐学的动机,在开放的课堂中提供了乐学条件,在活动的氛围中增加了乐学的体验。在上课过程中,“猜想到验证”的学生学习过程一直贯穿着整节课中。
3、课堂教学体现系统性。葛老师能灵活构建知识系统,注重教学内容的整体处理。能活用教材,让资源启迪探究。激发学生探究的欲望。通过例题,让学生比较系统地建立植树问题中“两端都要种”的情况。
4、课堂练习设计合理,如采用表格的形式出现不同的已知的条件,解决不同的问题,让学生通过解决问题,感受植树问题服务于生活,同时提高了学生解决实际问题的能力,更激发学生学习数学的兴趣。
5、葛老师还注重了利用例题的教学进行了归纳与总结,经过老师与学生的共同研究交流,总结出了解决问题的方法,有利于学生进一步的学习。这节课充分体现了老师与学生、教法与学法的和谐。
文档为doc格式。
植树问题评课稿(通用14篇)篇十一
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
课件、表格、尺子等。
1.教学间隔的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
预设:学生可能大多数对得到20棵。
师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?
全班交流汇报。(重点让用线段图来验证的小组来说明理由。)。
师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。
根据学生的回答,师填写表格:
总长(米)。
20。
全班观察表格寻找规律。
师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)。
师:对得到的这个规律有没有不同意见?
师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?
(1)基础练习。
师:请看题目,谁愿意来说一说?
a2.如果是每隔10米栽一棵呢?(口答)。
c.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。
(2)拓展练习。
师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?
课件出示解放碑的大钟及题目。
解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?
师:请同学们独立的在练习本上完成。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
植树问题评课稿(通用14篇)篇十二
(学生会很快发现:植树的棵数比间隔数多1)。
三、巩固应用,内化提高。
作业设计。
1.填一填。
(1)下面的线段有()个点,共有()小段,不封闭图形的点数和段数的.关系是()。
(2)在一条长300米的公路两边种树,每隔4米种1棵(两端都要种),这样一共要种()棵。
(3)如下图,在一条防风带上每隔30米种1棵树,这条防风带共种()棵树,由此可以。
推断出两端都种树时,树的棵树比间隔数()。
综合:
2.选一选:
(1)一个圆形花坛的周长是36米,每隔4米摆一盆花,一共需要()盆花。
a.8b.9c.10d.11。
(2)一座楼房每上一层要16个台阶,小红每天回家要走80个台阶,小红家住()楼。
a.5b.6c.7d.8。
拓展提升:
3.一条走廊长24米,每隔3米放一盆花,走廊两端都要放。一共要放多少盆花?
植树问题评课稿(通用14篇)篇十三
本次教学内容属于第二学段中“实践与综合应用”领域的教学。
“课标”中要求这部分内容教学时,“应引导学生从不同角度发现实际问题中所包含的丰富的数学信息,探索多种解决问题的方法,并鼓励学生尝试独立地解决某些简单的实际问题。”同时建议“数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情境,使学生通过观察、操作、归纳等活动,获得基本的数学知识和技能,进一步激发学生的学习兴趣”。
根据课标的要求,又考虑到前两个例题都是围绕植树这一情境展开的,因此我将教学内容由“围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少个棋子”的问题改为为学校设计花坛,在古柳周围正方形台面上摆花。激发学生学习兴趣的同时培养学生为学校贡献力量的集体主义意识。
学生已经初步接触了植树问题,会解决在一条线段中的植树问题,了解了栽的棵数与间隔数的关系。本课主要研究封闭图形上的植树问题,如何让学生建立起封闭植树和线段植树的联系,在头脑中建立解决此类问题的模型是教学的重点。
学生对动手操作、自主设计等教学活动比较感兴趣,因此我创设了为学校设计花坛的情境,设计了自主探究、小组合作等教学环节,来调动学生学习的积极性。
1.利用信息技术平台,提供问题情境,让学生通过生活中的事例探索、掌握解决封闭图形中植树问题的方法。
2.通过多媒体课件,渗透数形结合思想,引导学生在解决问题的分析、思考过程中,经历抽取出数学模型的过程。
3.在解决问题中,培养学生的独立思考、合作探究的能力,体会数学在生活中的广泛应用。
教学重点:让学生掌握解决封闭图形植树问题的思维方法。
教学难点:探索发现封闭图形情况下棵树与间隔数之间的关系。
本次教学内容为请学生扮演设计师角色为学校设计不同形状的花坛,学生对此内容感兴趣,对动手设计等教学环节比较感兴趣,课堂气氛应非常活跃。学生在思维的碰撞中能够自主探究出封闭图形中植树问题的解题方法,并从中发现问题中存在的一般规律。最终达到能运用知识解决实际问题的目的。
一、创设情景,引入问题
1.播放花坛中由鲜花拼摆出的不同形状的图案,学生欣赏图片,从中感受到鲜花排列的整齐特点。
2.进而教师提问:想不想用鲜花设计属于自己的花坛?今天这节课大家就来设计一个自己喜爱的花坛来装饰校园。
4. 组织学生反馈::9÷1+1=10盆
小结:同学们用以前学习的植树问题帮老师解决了这个数学问题。
预设生1:40盆,生2:36盆。
5.提出建议:到底是36盆还是40盆,要知道哪个答案是对的,老师建议大家用画一画的方法来验证一下到底是需要多少盆。
二、多元表征,感知模型
1.出示学习建议:
(1)请利用老师提供的材料,在纸上画一画,圈一圈。并写出算式。(花盆可以用符号表示)
(2)画好后先独立思考,再在小组中说一说你的方法。
2.组织反馈:你是怎么想的?由学生介绍自己的想法和列式。(先把学生的四种方法都用投影展示出来,再讲评每一种方法)
3.回顾方法:刚才我们这四种方法解决了问题。(课件动态演示)
小结:通过同学们的认真思考,利用已有的知识与经验探索出了这四种不同的策略来解决了同一个数学问题。
三、探索规律,有效建模
1.延续情境,提出问题:除了给古柳树周围正方形的台面摆鲜花外,学校还想再建一个大花坛,其中需要把红色太阳花摆在三角形台面上(每边6盆),把粉色的月季花摆在六边形的台面上(每边4盆),请你算一算各需要多少盆。)
每边6盆,一共要多少盆?每边4盆,一共要多少盆?
2.组织反馈:你是怎么算的?(结合图说明算式的意思)
学生利用材料自主探索。
5.组织交流评价:一共种几棵?你是怎么想的?你觉得在圆上放花有规律吗?有什么规律?你还有什么新的发现?(投影展示学生的设计方案,引导学生将在圆坛上摆花的问题和线段上的植树问题联系起来)
小结:花盆数=间隔数
(1)学生利用材料自主探索
(2)组织交流反馈
(3)动态演示:将这些图形拉伸为圆,并转化为线段。
小结:其实在所有封闭图形上,都具有花盆数=间隔数这样的关系。所以我们要求花盆总数,可以先求出间隔数。
四、拓展提升,实践应用
1.学校为了美化校园环境,引进了60盆花,如果想在学校门前的空地上摆出一个漂亮的图案,可以怎么摆?请和大家说说你的设计方案。
2.组织学生汇报。
3.小结
通过今天这节课的学习,你有什么收获?
植树问题评课稿(通用14篇)篇十四
3.让学生感受数学在日常生活中的广泛应用。
教学重点:
从封闭曲线(方阵)中探讨植树问题。
教学难点:
用数学的方法解决实际生活中的简单问题。
一、复习旧知,情境导入(课件出示)
(1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?
师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)
师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。
你能说说棵数与间隔数之间的关系
二、探索新知。
板书课题:封闭图形的植树问题
2、运用规律。
圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?
(1)引导学生读题,理解题意。独立完成。
(2)理解圆形的株数与间隔数相等,
列出算式:12÷2=6(盆)
3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数
4、发现规律:在圆形的花坛上种树,棵数=间隔数 。
圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?
5、学习例题:
学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:
方法1:直接点数出最外层一共可以摆放72个棋子。
方法2:列式:19 ×2+(19-2)× 2=72(个)
方法3:列式:(19-1)×4=72(个)
方法4:列式:4+(19-2)×4=72(个)
方法5:列式:19×4 - 4=72(个)
以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。
6、探究规律。
(1)首先理解封闭图形
围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)
(2)提问:
(3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。
学生研究发现 :如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。
(4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。
列式:(19-1)×4=72(个)
答:最外层一共可以放72个旗子。
(6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数
7、运用规律解决问题。
(1)摆棋子:一个四边形,每个顶点都摆一个。
(2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
设问:100-1求的是什么?乘4呢?(为什么要乘4?)
(3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
(4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?
8、摆花盆:完成做一做第2题 问题:
沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?
三、巩固延伸
解决问题:
1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?
课后延伸题
最外层总数=间隔数×边数
五、作业布置
教材122页的第4、6、7、8题