教学计划是指教师在教学中按照一定的目标、内容和步骤有序地安排和组织教学活动的计划。以下是一些经典的教学计划案例,希望对您的教学工作有所帮助。
商的变化规律应用教学设计(通用12篇)篇一
数学教学必须注意从学生的生活情境以及他们感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,从而对数学产生亲切感。
在教学中教师要努力挖掘学生身边的学习资源,为们创造一个发现、探究的思维空间,使学生能更好地去发现、去创造。“图形的变化规律”这一课时,以学生喜欢的“联欢会”为主线展开教学,通过“举行联欢会”—“布置教室”—“观察教室的设计”这一过程,使学生在自己喜欢的实践活动中探究、发现事物的规律,提高他们的观察、概括、推理能力,增强相互合作的意识。
在教学找规律的方法时,强调规律是一组一组重复出现的,身边的事物只要出现了三次或三次以上,就是有规律的。其实在教学时,教师可以在有规律的每组图形之间画上虚线,让学生充分理解规律就是这样一组一组重复出现的,从而使学学会找规律的方法。
课堂教学是一个动态的、复杂的过程,教师的“教”是为了更好地促进学生的“学”。教师应遵循学生发展的需要和状况来调整课堂教学,而不是让学生按照事先预想好的教学过程参与学习。教师不能完全按照事先设计好的环节进行,教学时富有弹性,以便根据学生的课堂表现灵活调整。
商的变化规律应用教学设计(通用12篇)篇二
1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
一、创设情景,提出问题。
屏幕显示:为九九重阳节开展的“走进敬老院,浓浓敬老请”活动我们全校学生都捐出自己的零花钱,为老人们购买一些物品。请你们帮忙算一算,一千克橙子6元,买2千克花多少钱?40千克呢?200千克呢?(学生回答)。
6╳2=12(元)。
6╳40=240(元)。
6╳200=1200(元)。
师:仔细观察、比较这组算式,你能发现什么?
生1:有一个因数都是6。
生2:对,一个因数相同,另一个因数不同,积也不同。
师:观察得真仔细!一个因数相同可以说一个因数不变,那另一个因数呢?
生3:另一个因数变了,积也变了。
生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。
师:你是从上往下观察的,还可以怎样看?
生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律。
1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2=12(元)。
6×20=120(元)。
6×200=1200(元)。
(1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。
(2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。
(3)出示18×2=36和30×2=60,还是与(1)式比较,观察因数和积分别又有怎样的变化?在小组内互相说一说。
师:谁来说说通过刚才的`两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
2、研究一个因数不变,另一个因数变小,积的变化情况。
学生独立思考后把想法在小组内交流一下。
(2)全班汇报交流:你发现了什么?是怎样发现的?
3、验证规律。
每位学生写3个算式,同桌互相检查和交流因数和积是怎样变化的。(汇报情况略)。
师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
生:一个因数不变,另一个因数乘几,积也乘几;一个因数不变,另一个因数除以几,积也除以几。
师:数学讲究简洁美,能把它说得再简单点吗?
生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
师:说得太棒了!同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?
三、运用规律,解决问题。
1、根据8×50=400,直接写出下面各题的积。
16×50=32×50=8×25=。
2、全社会各界朋友发起了向西藏教育捐赠和教师自愿者等活动,他们考虑着何种运输方式进入西藏。咱们也帮忙分析一下,一辆汽车在青藏公路上以60千米/时的速度行使,4小时可以行()千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行千米。
生:一辆汽车4小时可以行驶240千米,用60乘4等于240千米。
师:根据什么数量关系来列式计算?
生:速度乘时间等于路程。
师:第二个问题呢?
生:60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。
师:还有其它解法吗?
生:240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。
师:能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?
生:喜欢第2种,只需一步计算。
师:多关注已有信息,灵活运用规律能使解题思路更开阔。
……。
四、全课总结,拓展延伸。
师:在这节数学课上,你们还有什么收获吗?
生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。
18×30=18×15=18×5=54×5=。
师:比较18×15=270和54×5=270,你们还有什么新的问题、新的想法吗?
生:为什么两个因数都变了,积却不变呢?是不是有什么规律?
师:多么有价值的问题!下课后你们用今天研究问题的方法去探究新的规律,老师祝你们成功!
商的变化规律应用教学设计(通用12篇)篇三
苏教版义务教育课程标准实验教科书数学四年级(下册)p83例题,p83-84“想想做做”。
1、使学生借助计算器的计算,探索并掌握“一个因数不变,另一个因数乘几,得到的积等于原来的积乘几”的变化规律。
2、使学生在利用计算器探索规律的过程中,经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的基本方法,进一步获得探索规律的经验,发展思维能力。
3、使学生在参与数学学习活动的过程中,学会与他人交流,体会与他人合作交流的价值,逐步形成良好的与他人合作的习惯和意识。
4、使学生在发现规律的过程中,体验数学活动的探索性和创造性,感受数学结论的严谨性和确定性,获得成功的乐趣,增强学习数学的兴趣和自信心。
一、游戏引入:
用计算器玩游戏。
要求:在1-9中任意选一个数,然后用计算器把这个数乘3,再乘127,算出结果。只要一报出结果,老师马上能知道,一开始在1-9中任意选择的是哪个数。
二、揭示课题:
1、刚才我们用计算器玩了个小游戏,今天课上我们还要用到计算器,我们要用它来探索规律。(板书课题:用计算器探索规律)。
三、探索规律。
(一)建立猜想。
1、用计算器计算:36×30的积。
2、36、30在这个乘法算式中叫做什么?1080又叫做什么?
商的变化规律应用教学设计(通用12篇)篇四
《积的变化规律》是小学四年级上册第四单元的内容,它是学生在掌握乘法运算的基本技能的基础上利用乘法运算,培养学生的推理能力,特别是合情的推理能力,是本单元教学的重要任务。教材以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,归纳出积的变化规律。通过这个过程的探索,让学生理解两数相乘时,积的变化随其中一个因数的变化而变化。
例题的设计分为三个层次:研究问题——归纳规律——验证规律,通过学习,学生不但发现了积的变化规律,而且学会研究问题的一般方法。《积的变化规律》是引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。
新课程标准提出要让学生“经历、体验、探索”。因此在教学《积的变化规律》这节课中,我注重开发利用身边的生活资源,创造性地使用教材,将教材中的两组算式调整为一组乘法算式,但是,这一组算式是以能够体现我们课本所要传达的信息与知识,引导学生通过这一组算式去发现问题从而去经历发现规律——总结规律——验证规律——运用规律这四个层次的学习。在这四个层次的学习中,学生将会通过观察、探索、交流、归纳等方式经历积的变化规律的探索过程,初步获得探索规律的一般方法和经验,体验发现规律是一件很愉快的事情,从而增强学习数学的自信心。教学目标:
1.学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
引导学生自己发现规律,概括规律,进而运用规律。
先学后教(先让学生自主学习探究,再归纳总结)。
一、创设情景,导入新课。
师:今天,我们教室来了许多听课的老师,我们应该怎样表示欢迎啊?
生:鼓掌。
师:我们一分钟最多能鼓掌多少次呢?
通过学生猜测和实际尝试,得出学生一分钟鼓掌的次数,接着设问:2分钟、4分钟、8分钟、10分钟呢?引导学生列出算式并进行计算。
『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学问题的能力。
二、设疑自探:
1、出示自探提示:(课件出示)【找学生读自探提示】。
利用导学提纲自学课本51页内容,思考下面问题:
(1)从上往下观察第一组题:第?题与第?题比较,第?题与第?题比较,第一个因数有什么特点?第二个因数乘了几?积怎么变化?你发现了什么规律?把你的发现写出来。
(2)从上往下观察第二组题:第?题与第?题比较,第?题与第?题比较,第二个因数有什么特点?第一个因数除了几?积怎么变化?你发现了什么规律?把你的发现写出来。
(3)你能用一句话将两组题中已经发现的规律概括起来吗?
2、在学生自探时师板书课本例题:
例3观察下面两组题,说一说你发现了什么?
第一组:
6×2=12。
6×20=120。
6×200=1200。
第二组:
20×4=80。
10×4=40。
5×4=20。
3、根据自探提示,学生独立解决,教师巡视。
三、解疑合探。
32×50=?的得数,进一步归纳总结发现的规律,然后分小组讨论,自己当小老师出题验证发现的规律,最后和大家分享自己的研究成果,得出结论。
(课件出示第一组口算题目,演示对比这一组因数与积的变化情况,得出结论:两个数相乘,一个因数不变,另一个因数乘几,积也要乘几。)。
2×50=?的得数,进一步归纳总结发现的规律,然后分小组讨论,自己当小老师出题验证发现的规律,最后和大家分享自己的研究成果,得出结论。
(课件出示第二组口算题目,演示对比这一组因数与积的变化情况,得出结论:两个数相乘,一个因数不变,另一个因数除以几(0除外),积也要除以几。)。
3、通过观察、思考用一句话概括已经发现的规律。学生总结不完整时,讨论这个问题得出结论:(课件出示)两个数相乘,一个因数不变,另一个因数乘(或除以)几(0除外),积也要乘(或除以)几。这就是积的变化规律。(指导学生抓住关键词来记忆)。
四、运用拓展。
1、先找出规律再填空:
12×8=9640×21=840。
12×16=19240×7=210。
12×32=38420×21=420。
12×64=768。
2、判断:
(1)两数相乘,一个因数不变,另一个因数乘5,积应该乘5。()。
(2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。()。
(3)一个因数扩大4倍,积也一定扩大4倍。()。
24÷8=3560×3=1680(平方米)。
答:扩大后的绿地面积是1680平方米。
五、质疑再探:
探究:
1、两个因数相乘,两个因数同时乘几,积怎样变化?
2、两个因数相乘,两个因数同时除以几,积怎样变化?
3、两个因数相乘,当一个因数扩大另一个因数缩小时积怎么变化?)学生提出问题,找学生来回答,老师补充总结。
六、板书设计:。
第一组:第二组:
6×2=1220×4=80。
6×20=12010×4=40。
6×200=12005×4=20。
积的变化规律:两个数相乘,一个因数不变,另一个因数乘几(或除以)几(0除外),积也乘(或除以)几。
《积的变化规律》是人教版教材数学四年级上册第四单元的内容。它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我先创设情境,让学生列出相应的乘法算式,通过对算式的观察,让学生讨论自己的发现,然后引出新知,再让学生根据自探提示自主的去探索规律、验证规律,并使用规律.,本课主要是学生自主地去学习,我鼓励学生积极发言,大胆猜想,小心求证,积极主动地探索新知,让学生体会成功的喜悦,激发了学习兴趣,增强了自信心。这节课上下来还是存在许多问题:
1、由于本课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。这在后面拓展应用知识时表现的尤为明显,部分学生还是用以前的老方法进行计算,而不是找到规律直接写得数。在以后的教学中,要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极更有目标的去思考,增强学生的自信心,使学生能积极主动地去获取知识。
2、要用好评价语言,鼓励学生参与到课堂学习中。这节课的主要特点是让学生在一个愉悦的学习环境中进行思考、探索、讨论、发言,但是大部分学生还是不敢举手大胆的交流。这部分学生主要是害怕自己说错了,让别的同学取笑。针对学生不敢发言,在以后的课堂教学中要注意多给学生鼓励,多给学生信心,以使学生畅所欲言。
3、对于积的变化规律的运用,学生对于基本的练习能够运用自如,但是灵活度较高的练习就有些困难。因此,在选择练习时应关注练习的广度,让学生见多识广、灵活运用。
4、学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。特别是在初步感知规律后,引导学生猜想:是不是所有的乘法算式都具有这样相同的特点呢,再自己想办法加以验证。
商的变化规律应用教学设计(通用12篇)篇五
1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
一、创设情景,提出问题。
屏幕显示:为九九重阳节开展的“走进敬老院,浓浓敬老请”活动我们全校学生都捐出自己的零花钱,为老人们购买一些物品。请你们帮忙算一算,一千克橙子6元,买2千克花多少钱?40千克呢?200千克呢?(学生回答)。
6╳2=12(元)。
6╳40=240(元)。
6╳200=1200(元)。
师:仔细观察、比较这组算式,你能发现什么?
生1:有一个因数都是6。
生2:对,一个因数相同,另一个因数不同,积也不同。
师:观察得真仔细!一个因数相同可以说一个因数不变,那另一个因数呢?
生3:另一个因数变了,积也变了。
生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。
师:你是从上往下观察的,还可以怎样看?
生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律。
1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2=12(元)。
6×20=120(元)。
6×200=1200(元)。
(1)师:在研究问题的过程过程中,为了方便我们研究和表达,可以把这组算式分别说成(1)式,(2)式,(3)式。
(2)引导学生分别用(2)式、(3)式与(1)式比,观察因数和积分别有怎样的变化?在小组内互相说一说。
(3)出示18×2=36和30×2=60,还是与(1)式比较,观察因数和积分别又有怎样的变化?在小组内互相说一说。
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
2、研究一个因数不变,另一个因数变小,积的变化情况。
学生独立思考后把想法在小组内交流一下。
(2)全班汇报交流:你发现了什么?是怎样发现的?
3、验证规律。
每位学生写3个算式,同桌互相检查和交流因数和积是怎样变化的。(汇报情况略)。
师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
生:一个因数不变,另一个因数乘几,积也乘几;一个因数不变,另一个因数除以几,积也除以几。
师:数学讲究简洁美,能把它说得再简单点吗?
生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
师:说得太棒了!同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?
三、运用规律,解决问题。
1、根据8×50=400,直接写出下面各题的积。
16×50=32×50=8×25=。
2、全社会各界朋友发起了向西藏教育捐赠和教师自愿者等活动,他们考虑着何种运输方式进入西藏。咱们也帮忙分析一下,一辆汽车在青藏公路上以60千米/时的速度行使,4小时可以行()千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行千米。
生:一辆汽车4小时可以行驶240千米,用60乘4等于240千米。
师:根据什么数量关系来列式计算?
生:速度乘时间等于路程。
师:第二个问题呢?
生:60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。
师:还有其它解法吗?
生:240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。
师:能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?
生:喜欢第2种,只需一步计算。
师:多关注已有信息,灵活运用规律能使解题思路更开阔。
……。
四、全课总结,拓展延伸。
师:在这节数学课上,你们还有什么收获吗?
生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。
18×30=18×15=18×5=54×5=。
生:为什么两个因数都变了,积却不变呢?是不是有什么规律?
师:多么有价值的问题!下课后你们用今天研究问题的方法去探究新的规律,老师祝你们成功!
商的变化规律应用教学设计(通用12篇)篇六
一、教材分析:
《商的变化规律》这部分内容是在学生熟练掌握除数是两位数商一位和两位的笔算除法的基础上教学的,让学生掌握这部分知识,既为学习简便运算作准备,也有利于以后学习小数除法、分数和比的有关知识,是小学数学中十分重要的基础知识。
二、学情分析:
学生能运用已有的计算技能,通过计算,发现商随着被除数或除数的变化而变化,教师应充分利用学生已有的知识和经验基础,放手让学生通过计算、观察、比较等活动去发现规律,同时,注意发挥教师的引导作用。
三、教法学法:
基于以上的认识,遵循“知识与技能的学习必须以有利于其他目标(数学思考、解决问题、情感与态度)的实现为前提”的重要理念。为了完成以上目标,突出教学重点:发现规律,掌握规律;突破教学难点:利用商的变化规律进行简便计算。
因此,本节课主要采用了发现式教学法,小组讨论式教学法。教师以组织者、引导者和合作者的身份创设和谐的教学环境,实现教与学的和谐多元化互动,通过启发、引导学生积极参与到整个教学中去。学生一方面尝试发现,体验创造的过程;另一方面也可以增强合作意识,在小组交流,全班交流过程中相互学习、相互借鉴,逐步归纳出商的变化规律。
从四个环节进行,首先,谈话导入,揭示新课。在这环节没有创设情景,我认为这种探究规律课,直接进行探究要好些,另外,本课内容较多如果创设过多情景,可能难以上完。所以我直接安排学生快速抢答九道题,然后由学生分类,教师顺势提问:你是怎么分类的?由学生说出:按被除数不变、除数不变、商不变分类。这样直接为后面探究进行铺垫。
第二环节,探究规律,建构新知。从三个方面进行。
1、被除数不变,商的变化规律。这个规律要强细讲解,先要学生整体观察什么变了?什么没变?被除数不变,除数从上往下变大了,商从上往下反而变小了,反之除数从下往上变小了,商反而变大了。然后再详细讲解从上往下怎么变化,由学生总结规律;从下往上又怎么变化,又由学生总结规律。最后要求学生把以上两个规律用一句话表达出来。及时练习,在这我设计了231÷11=21231÷33=231÷77=这组题学生不可能直接口算,必须要用以上学习的规律才能简便运算,所以,计算后要学生说理,这有利于突破难点。另外,实物展示,把教材中枯燥、抽象的知识,编成学生亲身经历富有情趣的生活问题,使学生在真实的生活情景中,自觉、自主地完成学习的创新要求,体验到了学习的乐趣。
2、除数不变,商的变化规律。这个规律先通过计算、观察、比较、讨论等教学活动教师可以适当点拨,由学生总结规律,然后练习巩固。在这我也设计了一组练习:132÷12=11264÷12=1320÷12=做题过程同上。
3、商的不变规律,完全由学生先猜测规律,然后自己用计算、观察、比较、讨论等方法论证规律,最后用语言总结规律。这时教师要提醒学生注意同时乘几(或除以几),乘的数字或除以的数字一定要相同,并且问一问这个数字能不能是“0”?为什么不能为“0”?最后也象前面两规律一样练习巩固。
第三个环节应用练习,拓展提升。这环节有三题:
2、谁是它的朋友。学生通过计算就会发现320÷80与160÷40、3200÷800,1800÷600与180÷60是好朋友,而360÷60没有朋友,孤零零的请同学们帮助它找到朋友。开放性习题要开放性的练,才能真正拓展学生的思维,激活学生的思维,找朋友习题的设计一改以往“一对一”形式,让学生领悟到这种开放题的实质――不对应,激发了学生极大的参与意识和参与热情;这样“找”,为每个学生都创设了主动发展的空间。伴随学生情感参与的游戏练习,调动了学生学习积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
3、思考题,填空。即可以巩固新知,又可以发散学生思维。尤其是第四小题,可以同时填乘也可以同时填除以,后面正方形中可以填不为“0”的任何数。设计此题是为了更好的照顾每个学生,让学优生吃得饱,让学困生吃得好,让人人在数学学习中得到提高。
第四环节课堂小结。通过这节课,你学到哪些知识?
帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的体验。
在上新课时充分利用学生已有的知识和经验,放手让学生能过计算、观察、比较、讨论等活动去发现规律。该课的教学让我真正感到了学生是学习的主体,是创造的主体。为学生营造一个充分发挥思维能力和创造能力的氛围。给他们充足的时间和空间,就会收获希望,碰撞出思维的火花,达到真正感受数学的魅力。
商的变化规律应用教学设计(通用12篇)篇七
1.知识与技能。
通过操作、猜测、实践、验证等活动使学生逐步体验、发现事物中隐含的简单的规律。
2.过程与方法。
在猜测、实验的过程中逐步培养学生观察、操作及归纳推理能力。
3.情感、态度与价值观。
关注学生的情感体验,进一步增加学生学习数学的兴趣。
二、重点难点。
1.教学重点:认识并发现等差数列的规律,能初步运用规律。
2.教学难点:认识并发现等差数列的规律,能初步运用规律。
三、教学准备。
课件、正方形学具片、圆形学具片。
四、教学过程。
(一)开展游戏、激发兴趣。
小朋友们,你做过心灵感应的游戏吗?
来!伸出双臂,掌心和老师相对!
让我们闭上眼睛,去感受对方的心理……看谁都明白老师接着要说什么!
×××很可_____________(爱!)。
×××扎了两个______________(小辫儿!)。
×××脖子上戴着一条鲜艳的_______________(红领巾!)。
(二)开放游戏、探索规律。
(1)游戏的设置。
接下来,我们来互相感应对方的`心理!
各小组的同学合作与老师一起摆一摆,看看老师与哪些组的同学心有灵犀,摆出的方片数是相同的。
(2)游戏开始,尝试猜测。
师生先各摆出一个。
师:现在老师和大家都需要仔细思考思考,预测出对方接着最有可能摆出几个方片,小组内可以经过讨论再摆出来!各小组预测后摆的情况:
让学生把三种不同的预测展示于黑板。以后探索中,学生摆出的各种情况均展示于黑板。
学生阐述的理由。
第一次摆1个,1后面是2,第二次摆2个。
第一次摆1个,是单数,接着该摆3个,它们都是单数!
第一次摆1个,第二次摆10个,第三次摆100个,这些都是计数单位10。
(3)体验成功,继续游戏。
老师真没想到你们的思维竟然会这么开阔!这些想法太好了,都很有道理!老师只感悟出了其中的一种情况。
同学想到了三种摆方片的情况,咱们先选其中的一种情况继续游戏,好吗?
(4)继续游戏,不断探索。
小组内再次讨论,师生共同预测对方接着摆方片的数目学生预测的情况及原因:
师:这次老师又是仅仅预测到了同学们摆方片的一种情况,这两种摆法都很有道理,咱们先选其中的一种((2)种)来继续我们的游戏!
学生经过讨论进行下一次推测。
学生预测的情况:
师:很遗憾,这次老师又仅仅感悟出了你们摆出的一种情况,不过现在咱们再选择其中的一种继续游戏,老师就可以感悟出所有同学摆的情况!(选择第二种)试试看吧!
(5)游戏高潮,揭示规律。
学生经过讨论,预测出摆出方片的情况如下:(老师与学生同时出示)。
知道老师是怎样推测出来你们接着摆方片的情况的吗?
让学生充分、自由、尽情地表达他们所发现的规律。按这样的规律下一次该摆几个?
完成例题的内容。
(6)小结、揭题,多元化探索。
同学们真善于动脑筋!这节课我们探索的就是事物中存在的一引起简单的数量规律,板书:“找规律”
在我们做游戏的过程中,有很多小组摆方片的思路更独特、更精彩,比如:
……等等,只可惜没有摆完,如果按这些思路继续摆下去,将会有什么规律?以小组为单位,摆一摆,试一试!
小组活动,拼摆、猜测、实践,完善各小组原来想表达的规律,完善黑板的各种数量规律。
汇报交流。
(三)丰富游戏、巩固提高。
(1)设置情境,激发兴趣。
(2)“做一做”的题目。
(四)总结规律和方法。
你们真会思考,发现从2到4数量坏增多了,就标出增多了2个,从4至8又增多了,就标出增多了4个……这样一来,他就逐渐发现了数量增加的规律,这真是个好办法!
(1)练习二十三第2、3、4、6题。
课件依次出示第4、6、3、2题,由学生独立思考后完成。
(2)练习二十三第5题。
聪聪非常感谢大家,想请大家参加她的有氧运动,放松一下!你愿意参加吗?
蓝色弧线动态出示,如下:
接着该跳几下了?为什么?
请你按规律完成运动示意图!(完成第5题)。
(3)趣味活动。
小精灵明明也来参与我们的游戏,他给我们带来了一个有趣的拼摆,课件动态演示:
明明想让大家也来摆一摆,和他共同探索其中有趣的规律!
学生活动,交流其中的规律。
看来实际生活中,有些事物不仅数量上存在规律,形状上也有一定的规律,自己摆一摆、试一试,看能否设计出一些有规律的排列考考小伙伴儿!
(五)小结。
同学们,通过这节课的学习你有什么新的收获?
通过这些小小的游戏,老师看到的是同学们丰富的想象,敏锐的推理和开阔的思维。自然生活中,有很多奥秘都值得我们去探索,教师希望你们做个有心人,不断地去发现它们、创造它们、丰富它们!
(六)板书设计。
商的变化规律应用教学设计(通用12篇)篇八
1、创设具体情境,让学生通过计算、观察、比较,发现商不变的规律,并在此基础上探讨商随除数(或被除数)的`变化而变化的规律。
2、通过数学活动,发展学生的`观察、分析、抽象概括能力和数学表达能力。
3、让学生经历探索规律和发现规律的过程,从而激发学生的学习兴趣,培养学生良好的学习习惯和思维习惯。
二、教学重、难点。
重点:组织和引导学生通过计算、观察、比较和思考发现商的变化规律。
三、教学过程。
1、创设情境,激趣导入。
师:今天老师想介绍三位朋友给大家认识?你们想知道它们是谁吗?你看(播放课件:第一幅,动画出现三个小王子并分别自我介绍(被除数、除数、商);第二幅,出示除法王国的城堡,商说:这就是我们的城堡,你们想进去吗?(想)接着说:但必须要过三关才能进入我们的城堡,你们有信心通过吗?)。
生:有。
2、探究新知,除数不变规律。
师:课件出示一个小公园周一到周三卖出门票的记录表,请把表填完整。
总价/元单价/元。
168。
1608。
3208。
根据每组题的第一题的商,写出下面两题的商。
三、结束。
师:同学们,通过这节课的学习,你都有哪些收获呢?(师生交流总结)。
板书:
被除数不变规律。
除数不变规律。
被除数不变,除数乘几或除以几(0除外),商就除以几或乘几。
除数不变,被除数乘几或除以几(0除外),商也乘几或除以几。
被除数和除数都乘或除以一个相同的数(0除外),商不变。
商的变化规律应用教学设计(通用12篇)篇九
教学目标:1、让学生在了解我国城市至人均居住面积变化情况。
2、在了解的基础上,通过调查、计算、填表、和画图等活动,进一步了解自己及同班同学家庭19至20人均住宅面积的变化情况。
3、感受我国社会的发展与进步。
教学重点:学生收集数据、汇总数据、分析数据能力的培养。
教学难点:学生收集数据、汇总数据、分析数据能力的培养。
设计理念:充分发挥学生动手实践、自主探索、合作交流的能力。通过课前的收集数据到课堂上的计算汇总数据、分析数据以及填表画图等一系列活动,让学生进一步加深对相关数学知识和方法的理解。感受使用数学知识的实际运用价值,发展数学思考。
教学步骤教师活动学生活动。
年
20。
年
1、课前布置学生各自了解自己家庭在1998年、
年和2006年底的住宅建筑总面积和当时的人口数,并把了解到的数据记录下来,完成下表。
2、解释“建筑面积”的含义。
所谓建筑面积通常是指房产证上登记的面积。回家咨询家长。
收集数据。
完成表格。
二、指导计算。
分析数据。1、指导学生观察统计图,
介绍:“人均居住面积”是指平均每人拥有的卧室面积。
2、让学生自行列式解答问题1,指名说说具体的计算方法。
3、让学生小组里说说对问题(2)的理解,再全班交流。
相机提问:(1)19的人均居住面积是多少平方米?
(2)是不是可以肯定参与统计的669个城市的人均居住面积都已经达到小康目标?
小结:由于这里的“9.78平方米”是年全国669个城市的人均居住面积,正常情况下有的城市会大于这个数,有些城市会小于这个数也就是不能肯定所有城市都达到小康的目标。也就是平均数不能代表这组数据的整体情况。
观察教材提供的统计图,独立解答第一题。
学生回答。
小组交流。
全班交流。
指名回答。
学生回答。
集体补充小结。
三、汇总数据。
制作图表。
1、指名介绍一下现在家庭生活变化情况。
2、汇报自己的家庭住宅建筑面积的变化情况。
3、提问:要完成全班同学家庭人均住宅建筑面积变化情况统计表和统计图需要知道哪些数据。
讨论交流:怎样快速准确地把全班同学调查的数汇总起来。
小结优化方法:可以先分小组用计算器算出本小组同学家庭住宅建筑面积的和与人口数的和,再把各小组住宅建筑面积的和与人口数的和分别相加,从而算出全班同学家庭住宅建筑面积的总和与人口数的总和。
4、指导小组合作分工,完成本小组的数据汇总。
5、组织各小组汇报本组数据,进行全班汇总。
6、根据全班汇总出的数据,指导学生独立完成书上的统计图。
7、总结交流。
学生回答。
指名回答。
学生回答。
集体讨论。
集体总结。
小组进行数据汇总。
分组汇报全班汇总。
学生独立完成119页的统计图。
四、自主总结。
交流体会。
1、组织交流,鼓励从不同角度说说自己的收获体会。
2、指导阅读“你知道吗”?交流体会。学生交流。
自主阅读。
交流体会。
商的变化规律应用教学设计(通用12篇)篇十
1、通过计算、观察、比较、探索,引导学生发现、概括商的变化规律,并能理解运用规律进行计算。
2、引导学生经历“计算—猜想—观察—探索—发现—验证—应用”的过程。培养学生初步的观察分析和抽象概括能力。
3、培养学生善于观察,勤于思考,勇于探索的良好习惯,初步体验应用科学的方法进行数学研究的过程。
1、抽象并准确描述规律;
2、运用规律进行被除数和除数末尾都有零的简便计算。
课件。
一、创设情境,提出问题。
课件演示:“张老师买书”的图片,分别引出两组算式。
师:张老师花同样的钱,买到的书的数量却少了,这里面隐藏着什么样的数学规律呢?让学生说一说。
师:这节课我们就一起来研究“商的变化规律”。揭示课题:商的变化规律。
二、观察比较探索规律。
1、探索“被除数不变,商随除数变化而变化”的规律。
师:认真观察一组算式中被除数、除数和商各是怎么变化的?(引导学生分别从上往下观察和从下往上观察)。
让学生和同桌同学说说。
根据学生的表述,概括出“被除数不变,除数扩大(或缩小),商反而缩小(或扩大)。
2、探索“除数不变,商随被除数的变化而变化”的规律课件演示,引出第二组算式。
师:用刚才的方法认真观察,你能发现这里面除数、被除数和商有什么变化规律?要求学生认真观察、独立思考,尽可能完整表述变化规律“除数不变,被除数扩大(或缩小),商也扩大(或缩小)。”
让学生说出他们的想法,然后提供探索材料让他们自主探索。
(1)明确探索要求,有序进行探究。
阅读探索要求,提醒学生严格按要求有顺序地进行思考探索。
(2)先独立思考,再交流探讨。
在学生认真计算,充分观察比较的基础上与小组内的成员交流看法,尝试描述规律。
(3)汇报探索结果。
各小组展示汇报探索的成果。注意根据各小组探索的程度按“探索过程的展示——初步成果的展示——相对规范化描述”的顺序进行展示,逐步归纳出“商不变的规律”。
注意提醒学生“0”的特殊性,完整描述规律。
(4)验证规律,体验探索过程的严谨性。
师:写出一组商是5的算式,来验证这个规律的正确性,并加以解释说明。
(5)引导学生进一步解读“商不变的规律”,指出关键词并读一读。
三、应用规律,巩固提高。
2、数学诊所:通过“数学诊所”的情境,引导学生发现问题,进一步理解规律所表达的含义。
四、小结反思,评价升华。
1、本节课我们发现了哪些规律?
2、在探索发现规律的过程中应用了哪些方法?3你对自己的表现满意吗?
五、拓展延伸:
商的变化规律应用教学设计(通用12篇)篇十一
2.能运用积的变化规律解决简单的实际问题。
过程与方法。
1.经历积的变化规律的发现过程,初步获得探究和发现数学规律的基本方法和经验。
2.尝试用简洁的语言表达积的变化规律,初步渗透归纳的思想方法,培养学生探究、合作和交流的能力。
情感、态度与价值观。
1.通过参与学习活动,获得成功的体验,增强学习的自信心。
2.培养探索能力、合作交流能力和归纳总结能力,获得成功的乐趣。
重点难点。
课前准备。
教师准备ppt课件课堂活动卡。
学生准备练习本。
教学过程。
板块一创设情境,引入新课。
1.情境引入。
课件出示:
生:6×2=12(元)。
6×20=120(元)。
6×200=1200(元)。
提问:观察、比较这三个算式,它们有什么特点?
预设。
生1:其中一个因数相同,都是6。
生2:另一个因数分别是2、20、200,2扩大到原来的10倍变成20;2扩大到原来的100倍变成200。
生3:积也扩大了。
2.揭示课题。
师:三个算式之间的变化有一定的规律,这节课我们就一起来探究积的变化规律。(板书课题)。
操作指导。
出示例题时,不要以纯算式的方式呈现,而要结合身边的生活情境给算式赋予一定的生活意义,让学生感受到数学知识就在身边,激发学生的学习兴趣。
板块二合作交流,探究规律。
活动1探究一个因数不变,另一个因数不断变大,积的变化规律。
1.课件出示第一组算式:
6×2=12。
6×20=120。
6×200=1200。
2.学生独立观察并思考:你发现了什么?
3.组内交流所观察到的变化。
4.集体汇报:
预设。
生1:第1小题和第2小题相比较,因数6不变,2×10=20,12×10=120,第二个因数乘10,积也乘10。
生2:第2小题和第3小题相比较,因数6不变,20×10=200,120×10=1200,第二个因数乘10,积也乘10。
生3:第1小题和第3小题相比较,因数6不变,2×100=200,12×100=1200,第二个因数乘100,积也乘100。
5.师生共同总结规律。
小结:两个数相乘,一个因数不变,另一个因数乘几,积也乘几。
活动2探究一个因数不变,另一个因数不断变小,积的变化规律。
1.完成“课堂活动卡”。(见本书160页)。
2.总结规律:通过计算、观察、比较,发现这组算式都是一个因数不变,积随着另一个因数的变化而变化,即两个数相乘,一个因数不变,另一个因数除以几(0除外),积也除以几。
活动3举例验证,理解规律。
1.刚刚我们发现了一个很重要的规律,这个规律适用于所有的乘法吗?以17×12=204为例,保持因数17不变,把因数12分别乘10、乘100,看积是不是也乘10、乘100;以26×48=1248为例,保持因数26不变,把因数48连续除以2,看一看积是否也连续除以2。
2.学生通过计算验证。
3.学生自由举例验证。
4.小结:当我们从一些实例中初步发现一个规律时,一定要举例验证,当这个规律在各种情况下都成立时,我们所发现的规律就是具有普遍性的数学规律,我们就能应用这样的规律解决相应的实际问题。
操作指导。
在探究过程中要让学生经历观察算式、发现规律、验证规律的过程,使学生在探索中获得科学的探究方法,培养探究能力。
板块三应用规律,及时巩固。
1.巩固基础。
根据8×50=400,直接写出下面各题的积。
16×50=24×50=32×50=64×50=。
(学生独立完成,集体订正,说说积的变化过程)。
2.练习提升。
下面这块长方形绿地的宽要增加到24米,长不变,扩大后的绿地面积是多少平方米?
(读题理解后,学生独立完成,集体订正)。
板块四课堂总结,布置作业。
1.总结收获。
师:通过这节课的学习,你有哪些收获?
(学生谈谈自己的收获,教师针对重点予以强调)。
2.布置作业。
完成教材51页“做一做”1、2题。
板书设计。
例3(1)6×2=12。
6×20=120。
6×200=1200。
(2)20×4=80。
10×4=40。
5×4=20。
两个数相乘,一个因数不变,另一个因数乘几或除以几(0除外),积也乘(或除以)几。
商的变化规律应用教学设计(通用12篇)篇十二
在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面,这堂课以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。
在第一次的试教中,由于选择的一组题目较为容易,很多学生在解决问题时,不需要利用积的变化规律就能很容易口算出答案,使这一规律不能很好的应用,也没有应用的价值,规律的方便性就体现不出来了,因此在第二次试教时,我将这类型的题目加大了难度,使学生不能用口算的方法来计算出答案,只能运用这个规律来计算,但事与愿违,由于题目的难度偏大,一部分学生索性就用列竖式的方法来解决了。因此,在对题目的把握上还需下番心思。个别学生能用这个规律来算,却说不清个中的缘由,说明对这个规律还没有真正理解,掌握好,还不能信手拈来。个别同学竖的能看出来,写成横的就不太认识了。
在让学生自主探索一个因数不变,积随着另一个因数的变化而变化的规律时,我让学生根据预先设置好的题目来探究规律,这样显得有些程序化。如果能让学生现场根据自己想的,一个因数乘任何数(扩大任意倍数),看看积会怎么变化,这样会更有说服力,学生也更容易接受。
对于这类学生刚刚刚尝试探索规律的问题,应广泛地进行小组讨论,发挥集体的智慧,群策群力,让学生自己经历研究问题的一般方法:研究具体问题——归纳发现规律——解释说明规律——举例验证规律,让学生真正成为课堂的主人,给学生留出充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正,把思考的权利还给学生。