心得体会的写作可以培养我们的观察力、分析能力和表达能力。心得体会是我们在学习、工作、生活中积累的宝贵财富,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家整理的一些优秀心得体会范文,希望对大家的写作有所帮助和启发。
实用数学建模实践心得(汇总16篇)篇一
通过一个月的集训,我受益非浅。我进一步的认识到数学建模的实质和对参赛队员的要求。数学建模就是培养学生运用数学知识解决实际问题的能力。它要求参赛队员有较强的创新精神,有较大的灵活性和随机应变能力,要求参赛队员之间有良好的团队精神和相互协作意识。在一个月里,我们学了许多知识放方法,可以说数学建模需要的知识我们都了解了一点,关键在于如何应用这些知识。这种即学即用的能力是我们以后学习、工作所必须的能力。在此我对建模是出现的一些现象发表一些看法。
随着信息的高速化,我们很容易找到和建模有关的资料,这对我们理解题目意思和促发新思路、新想法是有帮助的。但是有的集训小组或集训队员他们建模完全依靠找资料,建出来的模型就是几本参考书的综合,他们所用的方法完全是别人研究过的东西,连一点改进也没有。如果这样的话,数学建模就失去了意义。我始终坚持一个观点:数学建模最重要的是创新。无论是你创造一种新方法还是创造性的运用一种方法,还是改进别人的方法都是很重要的。没有创新,模型就失去了灵魂;没有创新,模型就不是你的模型。
我们队配合不是很理想。主要是有个队员他总认为自己是正确的,别人找到的资料不如他好,别人提出的观点、思想思想无论正确与否,他总是会反对一下。他总是十分注重小的方面,不从大局考虑。由于这些原因,我们建的模型总是不好。
数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。1.只有经历这样的探索过程,数学的思想、方法才能沉积、凝聚,从而使知识具有更大的智慧价值。动手实践、自主探索与合作交流是学生学习数学的.重要方式。学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。
许校的讲座再次激起了我们对这个曾经的相识思考的热情。同样一个名词,但在新的时代背景下许校赋予了其更多新的内涵。
首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而许校的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。
其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而许校的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。
许校的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。
数学建模是一个经历观察、思考、归类、抽象与的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给学生再现了一种“微型科研”的过程。数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。
知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。
实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。
探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。
为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的.介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。
二、组织学生参加每年高教社杯全国大学生数学建模竞赛。
一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。
三、年度会员招收工作。
在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。
四、干事招聘会。
在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。
邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。
六、会员大会。
拟于每年10月下旬和12月上旬,召开两次西安电力高等专科学校数学建模协会会员大会;会间将有请协会的辅导老师:廖虎教授、余庆红、吴海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。
七、西安电力高等专科学校第二届大学生数学建模竞赛。
为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。
为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。
实用数学建模实践心得(汇总16篇)篇二
数学建模作为一种综合性的能力与技术,近年来深受大众的关注与推崇。作为一名数学爱好者,我对数学建模这个领域也产生了浓厚的兴趣。在阅读关于数学建模的相关书籍、学习课程与参加各类竞赛的过程中,我深刻地领悟到了数学建模的种种魅力,也汇总了一些读数学建模的心得与体会。
第二段:学习经验。
为了更好地理解数学建模,我通过网上课程等不断学习。由于数学建模这个领域广泛涉及到的知识面十分广泛,所以学习的内容也十分繁琐。在学习的过程中,我力求将各个专业领域的知识以及各种方法融合在一起,取长补短,做到融会贯通。同时,也需要不断地与比赛、挑战赛等交流中,去检验自己的知识水平,并不断地提高自己的学习能力。
第三段:实践体会。
学习归来,我开始了自己的实践之旅。在应对数学建模的挑战的过程中,我逐渐意识到模型的准确度与应用性是非常重要的。想要达到这点,必须不断地加强数学知识的学习,提高自己的实际操作能力。另外,更加注重分析真实场景与数据,了解不同数据之间的关系与差异,并运用不同的数据分析方法,以保证模型的精度与可靠性。
第四段:对未来的研究目标。
虽然我在数学建模的学习与实践中有了一定的收获,但我深知自己仍是一个初学者,未来的路还有很长。因此,我计划在未来的学习与实践中,更加注重对数学建模理论的深度探究,从更加基础的角度出发去分析模型,从而更好地将理论运用于实践。另外,我也将继续参加各种数学建模竞赛,不断挑战自己,提高自己的技能水平。
第五段:总结。
回首自己的数学建模之路,我深深体会到数学建模的魅力与难度。在实践过程中,我不断地学习、尝试与挑战自己,才有了今天的成果。未来,我会继续深入学习、实践,不断提升自己,让数学建模这个宝藏般的领域,能够不断地被挖掘、发现链梢,为人类社会提供更多的发展动力。
实用数学建模实践心得(汇总16篇)篇三
首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。
新一轮的基础教育课程改革经过近几年的实施与推进,新课程的理念已逐步被广大教师接受和认同,在教学实践的不同层面都得到了不同程度的体现与落实。作为课程改革的主阵地和落脚点——课堂教学,却还有或多或少的不尽如人意的地方。所以我们的课堂教学有必要依据新课程理念,建立符合实际的教学模式。反思我们的现在推行的解决问题课堂教学模式,不难发现与新课程改革的要求基本一致,有着诸多优点,主要表现在以下几个方面:
一、借助学生的生活经验,创设和谐课堂。
大量的研究表明,和谐的课堂学习环境可以有效的激发学生的学习兴趣,提高学习效率。在和谐的课堂学习环境中,学生的精神状态自然就会调整到最佳,并能随教师一起很快的进入到学习中来,从而实现课堂的高效。本次建模研讨中的两节均能从学生的生活经验出发,来灵活创设学习情境,激发学生的学习动力,实现了和谐课堂的创建,为下面数学活动的展开做好铺垫。
二、创设学习情境,激发学生参与数学学习的内在动力。
通过本次研讨活动,我深深的感受到:把学生的数学学习活动置身于一定的学习情境之中,把知识的学习寓于情境之中,能最大限度的提高学生的参与度,提高学生的学习效率。在我们推行的这一模式的实施中,能明显的看出教师作为学生学习的组织者、合作者、引领者的教师,能为学生创设一个放飞心灵、获取知识的园地,能在我们的课堂中把学生知识的获取、能力的发展、情感的体验、个性的张扬尽可能的融合到一起,尽可能的激发学生的学习积极性,激发学生学习的兴趣,充分发挥着学生在学习中的主体作用。例如:李艳秋老师执教的《相遇问题》一课中,教师提供的饿“送文件”这一学习情境,学生的就在这一情境中展开数学学习活动,在经历自主探究、合作交流、质疑建构中体验数学学习活动的乐趣,在体验探索中自主获取知识,积累数学活动的经验。
三、提供开放的课堂环境,放手让学生自主学习。
新课程改革倡导我们的数学课堂应该是面向全体学生,强调学生自觉参与的过程,反对以往教师在课堂中的“权威地位”。在这两节研讨课中教师尽可能为学生创设具有接纳性、宽容性的开放课堂,创设具有开放性的学习情境、问题引领等,来促使学生全身心的投入到学习中,让学生真正的做到动眼、动手、动口,实现课堂效率的有效、高效。例如:周宏娟老师执教的《百分数应用三》,让学生拿出课前调查的一个家庭支出情况的相关信息,让学生独立提出问题,自主尝试解决,在这样开放的学习环境中学生是可此不彼,积极参与,课堂的效果亦是很高!
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数。
学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
总之,数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。中学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导中学数学教学显得愈发重要。
共
2
页,当前第。
2
页
1
2
实用数学建模实践心得(汇总16篇)篇四
读数学建模课程是我大学三年级的必修课程,这门课程让我感受到了数学的实用性和严谨性,也让我深刻理解到数学在现实生活中的重要性。在这门课程中,我学习了数学模型的构建、求解和分析方法,我认为,这些知识对于我以后的学习和工作都有很大的帮助。
第二段:探究。
在学习数学建模的过程中,我发现,一个好的数学模型不仅要符合现实,还要有严谨的数学证明。因此,我学习了多种数学知识,包括微积分、线性代数、概率论与数理统计等,这些知识让我能够更好地构建数学模型,同时也能够更好地验证和分析结果。
第三段:发挥。
在实践建模的过程中,我发现,一个好的数学模型不仅需要有合适的数学公式,还需要有合理的数据支持。因此,我学习了如何获取和分析数据,并学会了使用MATLAB等计算工具对数据进行分析和可视化。这些工具不仅方便了我对数据的理解,还能够帮助我更好地展示数学模型的结果。
第四段:总结。
通过学习数学建模,我发现成功的模型需要具备以下特点:1、模型要符合现实;2、模型的数学表达式要严谨;3、模型需要有合理的数据支持;4、模型的结果需要有实际意义。这些特点相互为依存,缺一不可。同时,我也认识到,在数学建模中,灵活性和创新性同样重要,只有掌握了严谨的数学知识,才能更好地发挥个人思维的特点,构建出更为优秀的数学模型。
第五段:启示。
学习数学建模的过程中,我不仅学到了严谨的数学知识,还学会了如何分析和解决实际问题。在以后的学习和工作中,我将不断运用这些知识和技能,以更好地解决实际问题,为社会做出自己的贡献。同时,我也希望更多的人能够认识到数学的实用性和重要性,从而更好地学习和应用数学。
实用数学建模实践心得(汇总16篇)篇五
通过一个月的集训,我受益非浅。我进一步的认识到数学建模的实质和对参赛队员的要求。数学建模就是培养学生运用数学知识解决实际问题的能力。它要求参赛队员有较强的创新精神,有较大的灵活性和随机应变能力,要求参赛队员之间有良好的团队精神和相互协作意识。在一个月里,我们学了许多知识放方法,可以说数学建模需要的知识我们都了解了一点,关键在于如何应用这些知识。这种即学即用的能力是我们以后学习、工作所必须的能力。在此我对建模是出现的一些现象发表一些看法。
随着信息的高速化,我们很容易找到和建模有关的资料,这对我们理解题目意思和促发新思路、新想法是有帮助的。但是有的集训小组或集训队员他们建模完全依靠找资料,建出来的模型就是几本参考书的综合,他们所用的方法完全是别人研究过的东西,连一点改进也没有。如果这样的话,数学建模就失去了意义。我始终坚持一个观点:数学建模最重要的是创新。无论是你创造一种新方法还是创造性的运用一种方法,还是改进别人的方法都是很重要的。没有创新,模型就失去了灵魂;没有创新,模型就不是你的模型。
我们队配合不是很理想。主要是有个队员他总认为自己是正确的,别人找到的资料不如他好,别人提出的观点、思想思想无论正确与否,他总是会反对一下。他总是十分注重小的方面,不从大局考虑。由于这些原因,我们建的模型总是不好。
到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为,随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。
具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。
现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。
这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。
在课本第二章的时候我们开始接触实际问题,在第二章片头我们看到的就是某城市供水量的预测问题,在这一章里,老师通过城市供水量的预测问题介绍了求函数近似表达式的插值法和拟合法、城市供水量预测的简单方法、供水量增长率估与数值微分,其中插值法主要介绍lagrange法、newton法、分段低次插值和三次样条插值。至此我们才真正体会了数学建模对实际生产的帮助。
但同时,我们也发现,要学好数学建模这一门学科,或者说应用数学建模的知识去解决其他问题,不仅仅只要求我们有扎实的数学知识,还需要我们学习更多的数学分支学科,例如有时候我们还需要其他的数学软件来帮我们解决问题,同时还要考察实际情况学会从实际问题中提炼数学问题。
总的来说,学习数学建模这一门学科对我们的帮助很大,因为它不仅增强了我的知识面,我们可以在学习这一门学科的过程中锻炼我们学习积极性,逐步培养很强的自学能力和分析、解决问题的能力,这对于我们师范生以后走上教育工作岗位也是很有帮助的。
这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。
在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识……数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术。
在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革。
这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。
数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高学习数学建模也有一段时间了,说实话在还没学数学建模时,我以为这门课程是跟几何图形相关的,但在学了之后才发现完全理解错了,通过这段时间的学习使得我对数学建模有了一个全新的认识,数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。
以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。
通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的.在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的从问题的本质出发的一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。
数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。
在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的.单独思考,并且要有一定的分析问题的能力。
我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。
一年一度的全国数学建模大赛在今年的9月22日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2.有影响力的leader:在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),这里提供十种数学建模常用算法,仅供参考:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)。
实用数学建模实践心得(汇总16篇)篇六
数学建模心得要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的数学建模心得样本能让你事半功倍,下面分享【数学建模心得通用5篇】,供你选择借鉴。
以前在大一时就曾听说过数学建模这一学科,但只是很肤浅的了解,还错误的以为这门学科只是跟数学有关系,只要数学学好了,学好数学建模就轻而易举了。因为自己数学一直很好,对数学建模很感兴趣,也很自信,于是,大二时毫无疑问地选修了数学建模这门专业选修课,但是选择了以后才发现根本不像自己想象的那样简单。选修课时,对数学建模有了进一步了解,数学建模主要包括三大部分的内容:统计,优化,微分和差分。但是这也只是表面上的了解而已,上课老师只针对某一部分,告诉你要针对这一部分具体该怎么做,只是一种固定的模式,没有自己的任何建模思想。
百度上对数学建模的定义是这样子的:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。
数学建模是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模数学建模数学建模数学建模。
经过了这段时间对数学建模的学习,我终于对数学建模有了进一步的认识,数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。它给我们再现了一种“微型科研”的过程。它激发我们学习数学的兴趣,丰富了数学探索的情感体验;有利于我们自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于我们体会和感悟数学思想方法。
记得第一节课时,老师给我们解释什么是数学建模,老师举了一个简单的例子,“问题:树上有十只鸟,开枪打死一只,还剩几只?”,当时我们都觉得很奇怪,这问题很高深吗?这和数学建模有什么关系吗?紧接着老师就给我们解释了这道题,“是无声手枪或别的无声的枪吗?不是。枪声有多大?80—100分贝。那就是说会震得耳朵疼?是。在这个城市里打鸟犯不犯法?不犯。您确定鸟里真的没有聋子?没有。有没有关在笼子里的?没有。边上还有没有其他的树,树上还有没有其他的鸟?没有有没有残疾的鸟或饿得飞不动的鸟?没有。打鸟的人眼有没有花?保证是十只?没有花,就十只。有没有傻得不怕死的鸟?都怕死。会不会一枪打死两只?不会。所有的鸟都可以自由活动吗?完全可以。如果您的回答没有骗人,打死的鸟要是挂在是挂在树上没掉下来,那么就剩一只,若果掉下来,就一只不剩。”这就是数学建模。从不同度思考一个问题,想尽所有的可能,正所谓智者千虑,绝无一失,这才是数学建模的高手。然后,老师讲了数学建模能力的培养与提升,让我们感觉到,原来学好数学建模并不是一件简单的事靠的是分析题意的能力、查找资料的能力、建立数学模型的能力、问题的转化能力、现学现用的能力、编程能力、论文写作能力等多方面的能力。
首先我要说的是学习数学模型的意义,说到意义就要说到它的价值,我们知道教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。
新一轮的基础教育课程改革经过近几年的实施与推进,新课程的理念已逐步被广大教师接受和认同,在教学实践的不同层面都得到了不同程度的体现与落实。作为课程改革的主阵地和落脚点——课堂教学,却还有或多或少的不尽如人意的地方。所以我们的课堂教学有必要依据新课程理念,建立符合实际的教学模式。反思我们的现在推行的解决问题课堂教学模式,不难发现与新课程改革的要求基本一致,有着诸多优点,主要表现在以下几个方面:
一、借助学生的生活经验,创设和谐课堂。
大量的研究表明,和谐的课堂学习环境可以有效的激发学生的学习兴趣,提高学习效率。在和谐的课堂学习环境中,学生的精神状态自然就会调整到最佳,并能随教师一起很快的进入到学习中来,从而实现课堂的高效。本次建模研讨中的两节均能从学生的生活经验出发,来灵活创设学习情境,激发学生的学习动力,实现了和谐课堂的创建,为下面数学活动的展开做好铺垫。
二、创设学习情境,激发学生参与数学学习的内在动力。
通过本次研讨活动,我深深的感受到:把学生的数学学习活动置身于一定的学习情境之中,把知识的学习寓于情境之中,能最大限度的提高学生的参与度,提高学生的学习效率。在我们推行的这一模式的实施中,能明显的看出教师作为学生学习的组织者、合作者、引领者的教师,能为学生创设一个放飞心灵、获取知识的园地,能在我们的课堂中把学生知识的获取、能力的发展、情感的体验、个性的张扬尽可能的融合到一起,尽可能的激发学生的学习积极性,激发学生学习的兴趣,充分发挥着学生在学习中的主体作用。例如:李艳秋老师执教的《相遇问题》一课中,教师提供的饿“送文件”这一学习情境,学生的就在这一情境中展开数学学习活动,在经历自主探究、合作交流、质疑建构中体验数学学习活动的乐趣,在体验探索中自主获取知识,积累数学活动的经验。
三、提供开放的课堂环境,放手让学生自主学习。
新课程改革倡导我们的数学课堂应该是面向全体学生,强调学生自觉参与的过程,反对以往教师在课堂中的“权威地位”。在这两节研讨课中教师尽可能为学生创设具有接纳性、宽容性的开放课堂,创设具有开放性的学习情境、问题引领等,来促使学生全身心的投入到学习中,让学生真正的做到动眼、动手、动口,实现课堂效率的有效、高效。例如:周宏娟老师执教的《百分数应用三》,让学生拿出课前调查的一个家庭支出情况的相关信息,让学生独立提出问题,自主尝试解决,在这样开放的学习环境中学生是可此不彼,积极参与,课堂的效果亦是很高!
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数。
学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
总之,数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。而应用数学去解决各类实际问题就必须建立数学模型。中学数学教学的过程其实就是教师引导学生不断建模和用模的过程。因此,用建模思想指导中学数学教学显得愈发重要。
自从大二下学期真正开了数学模型这一门课之后,我对数学认识又进一步加深。虽然我是学纯数学即数学与应用数学,但是在我的认知中,数学最多的是单纯地证明一些定理抑或是反复的计算一些步骤比较多的题进而求解。随着老师在课堂上一点一点的引导、介绍、讲解,我渐渐地发现数学真的是很万能啊(在我看来),任何实际问题只要运用数学建立模型都可以抽象成一个数学方面的问题,进而单纯的分析、计算、求解。这只是我大体的认识。
首先,通过数学模型这一门课我解开了数学模型的神秘面纱,与数学模型紧密相连的就是数学建模,简而言之来说数学建模就是应用数学模型来解决各种实际问题的过程,也就是通过对实际问题的抽象、简化、确定变量和参数,并应用某些规律建立变量与参数之间的关系的数学问题(或称一个数学模型),在借用计算机求解该数学问题,并解释,检验,评价所得的解,从而确定能否将其用于解决实际问题的多次循环,不断深化的过程。
第一,数学模型是数学的一个分支,它还没有脱离数学,众所周知数学是一门比较抽象的课程,主要需要和训练的还是逻辑思维。因此数学模型需要和训练的都基本是思维,但和纯数学区别的是数学模型只要抽象出数学问题的本质,进而建模,那之后不是非得自己一步步地演算、求解。
第二,数学模型最后的求解很多时候都不可避免地要用到计算机,比如像matlab,spss,linggo之类的数学软件。因此在学习过程中我们也得对这些软件有一定的了解和认识。这也就与平常的学习方式产生了区别,平常的数学方式因为其内容和讲授被限制在了平常的阶梯教室,但数学模型这一门课就必须通过自己的实践运用计算机来达到自己的目的。因此我们的学习方式就多了一项(通过计算机进一步了解数学模型的魅力)。
第三,因为数学模型是对现实问题的分析,因此老师在课堂上进行的授课通常会是老师引导、师生之间相互商量,因此课堂氛围一般都比较活泼,学习起来会相对的比较轻松。这样对学生的思维的开拓有很大的好处。因为我们在生活和学习的过程中都接触过很多问题的数学问题的模型,所以思考其整个过程及其影响因素就不会出现无从下手的感觉。相反的,在考虑问题的时候,我们更能提出自己的一些见解并能积极地与老师展开讨论。
第四,数学模型充分挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,它也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,仅仅抓住问题的本质方面,是问题尽可能简单化,这样才能解决问题。
第五,说到数学模型就必不可免得会联系到数学建模大赛。因为教育必须适应社会的需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的需求,对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析和解决实际问题的意识和能力。数学建模大赛就是顺应这一要求,此外,数学建模还可以提高学生的竞赛能力,抗压能力,问题设计的能力,搜索资料的能力,计算机运用能力,论文写作与修改完善能力,语言表达能力,创新能力等科学综合素养。
第六,虽然我没参加过数学建模大赛,但是我曾去过数学建模的培训课程,通过老师的介绍,我知道数学建模对团队合作要求很高。一个人的能力毕竟有限,不能把什么都做得很好,即使少数人能方方面面都顾全到,那得多么的累,况且真正的数学建模大赛是对时间有限制的,不会让你不限时地让你做。正所谓‘三个臭皮匠,胜过诸葛亮’,可见思想与思想之间的交流产生的结果是多么的好,此外,每个人因为所处环境与经历还有专业的限制,每个人思考问题的角度都不尽相同。所以集结每个人的优点才会使自己的团队所做出来的结果更优秀。
以上只是我在这短短几个月对数学模型的浅显的认识,不用说大家肯定都只道数学模型更像是一个工具,所以说它的魅力作用及影响肯定不会仅仅是这些,有时现实生活中及各个学科都需要它来解决问题,所以这更要求我们要认真学好这门课。
通过上课我也有一点建议,就是希望老师可以让同学们结成小组再在课上可以讨论某几道题,这样可以加强同学们在这方面的能力,也可以提高课堂氛围。
这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。
在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。
数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案„„这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。
数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”这句话的真谛所在,这些知识必将为我们将来的学习工作打下坚实的基础。从现在我们的学习来看,我们都是直接受益者。就拿我此次学习数学建模后写论文。原本以为这是一件很简单的事,但做起来才发觉事情并没有想象中的简单。因为要解决问题,凭我们现有的知识根本不够。于是,自己必须要充分利用图书馆和网络的作用,查阅各种有关资料,以尽量获得比较全面的知识和信息。在这过程中,对自己眼界的开阔,知识的扩展无疑大有好处,各学科的交叉渗透更有利于自己提高解决复杂问题的能力。毫不夸张的说,建模过程挖掘了我们的潜能,使我们对自己的能力有了新的认识,特别是自学能力得到了极大的提高,而且思想的交锋也迸发出了智慧的火花,从而增加了继续深入学习数学的主动性和积极性。再次,数学建模也培养了我们的概括力和想象力,也就是要一眼就能抓住问题的本质所在。我们只有先对实际问题进行概括归纳,同时在允许的情况下尽量忽略各种次要因素,紧紧抓住问题的本质方面,使问题尽可能简单化,这样才能解决问题。其实,在我们做论文之前,考虑到的因素有很多,如果把这一系列因数都考虑的话,将会花费更多的时间和精神。因此,在我们考虑一些因素并不是本质问题的时候,我就将这些因数做了假设以及在模型的推广时才考虑。这就使模型更加合理和理想。数学建模还能增强我们的抽象能力以及想象力。对实际问题再进行“翻译”,即进行抽象,要用我们熟悉的数学语言、数学符号和数学公式将它们准确的表达出来。
通过学习数学建模训练,对我的收益不逊于以前所学的文化知识,使我终生难忘。而且,我觉得数学建模活动本身就是教学方法改革的一种探索,它打破常规的那种老师台上讲,学生听,一味钻研课本的传统模式,而采取提出问题,课堂讨论,带着问题去学习、不固定于基本教材,不拘泥于某种方法,激发学生的多种思维,增强其学习主动性,培养学生独立思考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。这对于我们以后所从事的教育工作也是一个很好的启发。
总之,“一份耕耘,一份收获”。作为一名对数学有着浓厚兴趣的学生,我深刻地感到了自己在程序的编制和软件应用以及自学能力,有了很大的提高,并将对我今后的专业学习有很大的帮助。想到这里,我不由得被老师的良苦用心所感动,为我们创造了如此优越的学习条件,处处为学子着想。因此,在今后的学习中,我会保持这种学习的劲头,刻苦努力,争取以更优异的成绩。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识„„数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术.
在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革.
这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。
数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高。
数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。
以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。
通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的.在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的从问题的本质出发的一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。
数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。
在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的单独思考,并且要有一定的分析问题的能力。
我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。
实用数学建模实践心得(汇总16篇)篇七
通过一个月的集训,我受益非浅。我进一步的认识到数学建模的实质和对参赛队员的要求。数学建模就是培养学生运用数学知识解决实际问题的能力。它要求参赛队员有较强的创新精神,有较大的灵活性和随机应变能力,要求参赛队员之间有良好的团队精神和相互协作意识。在一个月里,我们学了许多知识放方法,可以说数学建模需要的知识我们都了解了一点,关键在于如何应用这些知识。这种即学即用的能力是我们以后学习、工作所必须的能力。在此我对建模是出现的一些现象发表一些看法。
随着信息的高速化,我们很容易找到和建模有关的资料,这对我们理解题目意思和促发新思路、新想法是有帮助的。但是有的集训小组或集训队员他们建模完全依靠找资料,建出来的模型就是几本参考书的综合,他们所用的方法完全是别人研究过的东西,连一点改进也没有。如果这样的话,数学建模就失去了意义。我始终坚持一个观点:数学建模最重要的是创新。无论是你创造一种新方法还是创造性的运用一种方法,还是改进别人的方法都是很重要的。没有创新,模型就失去了灵魂;没有创新,模型就不是你的模型。
我们队配合不是很理想。主要是有个队员他总认为自己是正确的,别人找到的资料不如他好,别人提出的观点、思想思想无论正确与否,他总是会反对一下。他总是十分注重小的方面,不从大局考虑。由于这些原因,我们建的模型总是不好。
到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为,随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。
具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。
现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。
这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。
在课本第二章的时候我们开始接触实际问题,在第二章片头我们看到的就是某城市供水量的预测问题,在这一章里,老师通过城市供水量的预测问题介绍了求函数近似表达式的插值法和拟合法、城市供水量预测的简单方法、供水量增长率估与数值微分,其中插值法主要介绍lagrange法、newton法、分段低次插值和三次样条插值。至此我们才真正体会了数学建模对实际生产的帮助。
但同时,我们也发现,要学好数学建模这一门学科,或者说应用数学建模的知识去解决其他问题,不仅仅只要求我们有扎实的数学知识,还需要我们学习更多的数学分支学科,例如有时候我们还需要其他的数学软件来帮我们解决问题,同时还要考察实际情况学会从实际问题中提炼数学问题。
总的来说,学习数学建模这一门学科对我们的帮助很大,因为它不仅增强了我的知识面,我们可以在学习这一门学科的过程中锻炼我们学习积极性,逐步培养很强的自学能力和分析、解决问题的能力,这对于我们师范生以后走上教育工作岗位也是很有帮助的。
这学期,我学习了数学建模这门课,我觉得他与其他科的不同是与现实联系密切,而且能引导我们把以前学得到的枯燥的数学知识应用到实际问题中去,用建模的思想、方法来解决实际问题,很神奇,而且也接触了一些计算机软件,使问题求解很快就出了答案。
在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。我认为学习数学模型的意义有如下几点:一学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识……数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术。
在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革。
这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。为了更好地组织、指导此项活动,让更多的学生投入此项活动并从中受益,学生根据组织与指导的实践,对数学建模活动的作用与实施谈一些认识,以期起到深化数学教学改革、推动课程建设的作用。方法,去近似刻画、建立相应数学模型并加以解决的过程。为检验大学生数学建模的能力,而我国大学生数学建模竞赛。参加过数学建模活动的教师与学生普遍反映,数学建模活动既丰富了学生的课外生活,又培养了学生各方面的能力,同时也促进了大学数学教学的改革。通过数学建模活动,教师与学生对数学的作用有了进一步的认识。激发学生学习数学的兴趣。现今大学工科数学教学普遍存在内容多、学时少的情况,为此很多教师采取了牺牲应用、偏重理论讲解以完成教学进度的方法,使学生对数学的重要性认识不够,影响了学生学习数学的兴趣,很多学生进入专业课学习阶段才感觉到数学的重要,但为时已晚。
数学建模活动及竞赛的题目是社会、经济和生产实践中经过适当简化的实际问题,体现了数学应用的广泛性;学生参与数学建模及竞赛活动,感受到了数学的生机与活力,感受到了对自己各方面能力的促进,从而激发起他们学习数学的兴趣。培养学生多方面的能力,培养综合应用数学知识及方法进行分析、推理、计算的能力。由于数学建模的过程是反复应用数学知识与方法对实际问题进行分析、推理与计算,以得出实际问题的最佳数学模型及模型最优解的过程,因而学生明显感到自己这一方面的能力在具体的建模过程中得到了较大提高学习数学建模也有一段时间了,说实话在还没学数学建模时,我以为这门课程是跟几何图形相关的,但在学了之后才发现完全理解错了,通过这段时间的学习使得我对数学建模有了一个全新的认识,数学建模就是当人们面对各种实际问题时,根据人们对问题的理解,完成对模型的假设,建立和确定求解问题的方法与途径,然后建立好方程组,然后再与计算机的软件相结合,最终得到该实际问题的最佳求解答案。
以前在高中时学过些简单的线形规划,但那时都是些简单的问题,在列解出方程后通常只有两个未知数,但这明显不符合现实生活中的问题,因为往往涉及到一些实际生产问题时通常都是比较麻烦的,列出方程后的未知数也不可能只有两个,因此就要用到数学模型与计算机相结合来处理了。
通过对数学建模的学习,使得我对数学有了全新的看法,也因此感觉到数学这门课程对于生产的利益是密不可分的,开展数学建模的学习是提升我们综合能力的好机会,使得我们不再是纸上谈兵了,并且也使得我们又多了一门技能。数学建模所解决的问题不是一个单一的数学问题,它要求我们除了有扎实的数学功底外,还需要我们去不断的查阅资料,并且还要能熟练的应用计算机的软件。所以它能极大的拓宽我们的知识面,这些知识也能为我们将来的工作打下坚实的基础,也让我理会到学习是不断发现真理的过程,并且它给我们带来的知识面不是任何专业都能涉及到的.在学习数学建模的过程中,我充分的体会到了数学给人们带便利实在太大了,在涉及到现实的工业生产中,它能给企业的利益最大化,并且也能节省国内的能源,所以人类要是离开了数学建模,那后果真是不堪设想。其实数学建模对于我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念,而在学习数学建模以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道要这样做,却不知道为什么会这样做,现在我们这种陈旧的思考方式已经被数学建模转化成多层次,多角度的从问题的本质出发的一种新颖的思维方式了,这种凝聚了多种优秀方法为一体的思考方式一旦被掌握了,它能转化成你自身的素质,并且能在你以后的生活和工作中继续发挥着作用的。
数学建模是一种运用数学符号,数学式子,计算机程序等相结合的对实际问题做出规划而得出最佳的解决方法。不论是用数学方法解决在科技和生产领域解决哪类生产实际问题,还是与其他学科相结合形成交叉学科,首先和关键一步是建立研究对象的数学模型,并加以计算求解,我就简单说明一下具体的操作方法:首先是模型的准备,了解问题的实际背景,明确其实际意义,掌握对像的各种信息,用数学语言来描述问题。第二步是模型的假设,根据实际问题的特征和建模的目的,对问题做出必要的简化,并用精准的语言做出恰当的假设。第三步是模型的建立,在假设的基础上,用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学架构。第四步是模型的求解,利用获取的数学资料,对模型所有参数做出计算。第五步是模型的分析,对所得的结果做出数学上的分析。第六步是模型检测,将模型的分析结果与实际情况进行比较,以此来确定模型的合理性,如果模型与实际比较吻合,则要对计算结果给出其实际含义,并做书解释。第七步是模型应用,应用的方式因问题的性质和建模的目的而异。
在一般的工程技术领域,数学建模仍然大有用武之地,因此数学建模的普遍性和重要性不言而喻,由于新工业和新技术的不断涌现,提出了许多需要用数学建模来解决的问题,因此使得许多的问题迎刃而解,建立数学建模和计算机的软件,大量的代替了以前的复杂的计算问题。随着数学向这储如经济了等领域进行渗透,人们在计算如何使得经济利益最大化时,数学建模毫无疑问在这里面发挥出巨大的作用,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的。数学建模过程是一种创新过程,在思考方法和思维方式上与学习其他课程有着较大的区别,它需要我们在学习时能冷静的.单独思考,并且要有一定的分析问题的能力。
我相信随着科技的不断创新发展,数学建模在其中的地位会越来越高,所以对于一个大学生来说,学好数学建模固然是非常重要的。
一年一度的全国数学建模大赛在今年的9月22日上午8点拉开战幕,各队将在3天72小时内对一个现实中的实际问题进行模型建立,求解和分析,确定题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现将心得体会写出,希望与大家交流。
1.团队精神:团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2.有影响力的leader:在比赛中,leader是很重要的,他的作用就相当与计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥,就拿选题来说,有人想做a题,有人想做b题,如果争论一天都未确定方案的话,可能就没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),leader应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。
3.合理的时间安排:做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4.正确的论文格式:论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定要有正确的格式,就拿摘要来说吧,它要包括6要素(问题,方法,模型,算法,结论,特色),它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5.论文的写作:我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里面,总之,论文写作的好坏将直接影响到成绩的优劣。
6.算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),这里提供十种数学建模常用算法,仅供参考:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lindo、lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理)。
实用数学建模实践心得(汇总16篇)篇八
第一段:引言(200字)。
数学建模是一门重要而又充满挑战性的学科,通过数学的工具和方法解决实际问题,对我们的发展和应用起着重要的推动作用。作为一名参与数学建模竞赛的学生,我有幸获得了宝贵的实践机会,并积累了许多宝贵的经验和心得体会。在这篇文章中,我将分享我在数学建模中的心得体会。
第二段:认识问题(200字)。
了解问题并准确地定义问题是解决问题的第一步。在数学建模中,我们需要学会发现问题,分析问题,并将问题用适当的数学语言进行描述。同时,对问题有一个全面的了解,并明确问题的目标和限制条件非常重要。只有正确地认识问题,才能确定解决问题所需的方法和途径。
第三段:寻找解决方法(200字)。
解决问题的方法有很多种,对于不同的问题则需要采用不同的方法。在数学建模中,我们需要灵活运用各种数学知识和工具,比如概率统计、优化理论等等。同时,我们还需要学会思考和创新,寻找适合问题本质的解决方法。这就要求我们对数学的应用要有丰富的经验和广泛的知识储备。
第四段:模型建立与验证(200字)。
在数学建模中,模型的建立是至关重要的一步。一个好的模型能够很好地反映实际问题的特点和规律,并提供可行的解决方案。在建立模型时,我们需要充分挖掘问题本身的特点和内在关系,运用合适的数学工具进行建模。然后,我们要对模型进行验证,验证模型是否可靠和有效。模型的合理性和准确性是解决问题的关键。
第五段:交流与展示(200字)。
数学建模的结果不仅仅体现在解决问题本身,还需要将解决方案和结论进行有效的交流和展示。在数学建模竞赛中,我们需要通过图表、图像等方式清晰地展示模型和结果。同时,我们还需要写出规范、准确和逻辑严谨的报告,将我们的研究成果进行完整和系统的呈现。通过交流和展示,我们不仅能够证明自己的能力和成果,也能够与他人进行交流和学习。
结尾(100字)。
通过参与数学建模竞赛,我深刻地体会到了数学建模的重要性和挑战性。在未来的学习和工作中,我将继续加强对数学建模的学习和实践,不断提高自己的数学建模能力,并将其运用到更多实际问题的解决中。相信通过不断的努力和实践,我会取得更多的成果。
实用数学建模实践心得(汇总16篇)篇九
读数学建模是一项需要较高能力的学问,需要具备丰富的数学知识和逻辑思维能力。在我学习的过程中,我深刻认识到了数学建模的重要性以及在实际工作和生活中的应用价值。以下是我的读数学建模的心得体会。
作为一个计算机科班出身的学生,我很早就开始了接触数学建模。但在一开始的时候,我并没有真正理解什么是数学建模。直到在大学的选修课中系统地学习了一门《数学建模及应用》课程后,我才对数学建模有了更深入的认知和理解。
第二段:理解“建模”
“建模”的核心意思是将复杂的实际问题转化为数学模型,然后用数学语言描述该问题并进行数学分析。在实际的工作和生活中,我们要面对、研究的诸如市场营销、物流运输、气象环境、图像视频等不同领域的问题都可以通过“建模”的方式进行求解。
第三段:掌握数学和编程技能。
数学建模需要掌握扎实的数学功底,同时也要在编程技能上有所涉猎。这是因为数学建模过程中需要运用到很多数据分类和筛选、数据可视化、计算机程序的实现等技能。只有将数学和编程技能完美结合,才能为数学建模提供最有利的条件。
第四段:关注实际问题。
在理论知识的积累与技术能力的提升之外,数学建模中还需要关注实际问题。我们不能将理论和技术与实际问题划分开来。可行的“建模”问题是源于实际问题,因此,在发现实际问题的基础上,我们才能够有更清晰的目标和向实现目标的循序渐进的步骤。
第五段:学习和交流。
数学建模需要广泛学习和交流。我们要阅读相关领域的探讨和论文,获取更多的行业知识。同时,我们还要积极参加学术会议和交流活动,与其他学者和专家协同工作和深度探讨,交换经验和知识,并不断提升自己的建模能力。
在读数学建模的过程中,我也留下了许多经典案例和优秀论文,坚持探索科学问题的本质,发掘应用数学的潜力。数学建模是一个学习与实践并行、动态更新的过程,它将不断影响我们思考问题和解决问题的方式,让我们更好地懂得数学对人类社会发展的重要性。
实用数学建模实践心得(汇总16篇)篇十
数学建模作为一门综合性学科,具有广泛的应用领域和深远的影响,对于提高解决实际问题的能力和培养创新思维具有重要意义。通过参与数学建模比赛和项目,我深刻地认识到数学建模的重要性,也积累了一些心得体会。下面我将结合个人经历,谈谈我在数学建模过程中的心得体会。
一、明确问题与方法。
在进行数学建模之前,首先要明确问题的面貌和要解决的目标,然后选择适合的方法进行分析和求解。在这个过程中,我们要善于抓住问题的关键点,理清问题与已有知识的联系,避免偏离主题和走入死胡同。同时,我们也要善于借鉴已有的数学工具和模型,不断开拓创新。
在一次模拟城市交通拥堵的建模比赛中,我意识到对于这个复杂的问题,单纯的数学模型是远远不够的。所以,我结合地理信息系统(GIS)和传感器技术,将城市道路分隔成小区域,通过收集实时的交通数据,建立起更为精确和实用的交通拥堵模型。这一方法不仅使得模型具有了更高的可靠性和准确度,也增加了我们对解决问题的信心。
二、合理假设与模型构建。
在进行数学建模时,我们往往需要根据实际情况进行一些合理的假设,以简化复杂的问题和推动建模的进程。但是,这些假设必须是合理和可行的,不能过于片面或离实际太远。同时,在构建模型时,我们也要尽量选用简单而有力的数学工具,以便于计算和分析。
在解决一个涉及医学影像分析的问题时,我们需要对医学影像进行处理和分析,还要设计出一个能够自动识别和分析影像的数学模型。我所参与的团队深入了解医学影像学,分析了不同的影像特征,并基于传统的神经网络模型构建了一个高效的医学影像分析模型。在模型的构建过程中,我们注意了计算和实施的可行性,将模型的复杂度降低到合理的范围内,并采用了一些有效的算法来提高模型的精确性和准确度。
三、数据分析与结果验证。
在数学建模中,数据的分析和结果的验证是非常重要的环节。通过对数据的分析,我们可以揭示问题的本质和规律,进而得出解决问题的方法和结论。而结果的验证则是模型可靠性和精确性的检验,也是对我们解决问题的能力和方法的评判。
在一次银行信用评估的建模过程中,我们基于大量的历史交易数据,通过建立一套信用评估模型,对客户的信用情况进行分析和预测。在对模型进行验证时,我们通过对部分客户进行筛选和测试,对比模型预测的结果与实际情况,发现模型的准确度达到了90%以上。这使我们对模型的有效性和可靠性有了更加深刻的认识,并为进一步完善和推广模型提供了依据。
四、团队合作与学习。
数学建模不仅仅是一个人的事情,更是一个团队的合作。通过和其他队员的合作,我们可以相互学习和借鉴彼此的经验和思维模式,在解决实际问题的过程中形成协同效应。同时,团队合作也是一个学习的过程,通过和队友的交流和探讨,我们可以不断拓宽思维,并且从对方身上学到更多的知识和技能。
在一次研究森林生态系统的建模项目中,我和团队成员们共同制定了研究方案和实验设计,并分工协作。通过团队的合作,我们不断从实验数据中总结经验,进行模型验证和修正,并最终成功地建立了一个能够模拟和预测森林生态系统变化的多元模型。这个成功的案例不仅使我们对数学建模有了更深入的认识,也让我们领悟到团队合作的重要性和价值。
五、不断学习和总结。
在数学建模的过程中,我们要不断学习和总结,积累经验和提高能力。只有不断的学习和实践,我们才能够更好地适应和解决不同领域的实际问题,并在数学建模的道路上不断成长。
总的来说,参与数学建模是一次很有收获和意义的经历。通过这次经历,我不仅提高了数学建模的能力和素养,也深刻领悟到了科学研究的重要性和技术创新的意义。我相信,在未来的学习和工作中,我会更加努力地学习和实践,用数学的力量为解决实际问题做出更大的贡献。
实用数学建模实践心得(汇总16篇)篇十一
数学建模是一项旨在解决现实问题的学科,它需要将数学、计算机科学和领域知识相结合,以设计出最优化的解决方案。作为一个数学爱好者,我一直对数学建模领域感兴趣。最近,我参加了一次由学校组织的数学建模大学心得体会活动,我想与大家分享我的经验和收获。
第二段:活动背景。
本次活动由学校数学与信息科学学院组织,旨在加强学生对数学建模的理解,并为学生提供实践经验。在此次活动中,学生们将被分为小组,完成一项实际的数学建模任务,例如分析一家公司的市场策略或者预测未来的气候变化。
第三段:实践任务与困难。
在本次实践任务中,我们小组需要使用统计学的方法来分析一份关于一家超市购物习惯的调查问卷。我们需要选择适当的统计方法来分析数据并提出针对性的解决方案。虽然我们在课堂上学过统计学的理论知识,但在实践中我们遇到了一些困难。首先,我们需要对数据进行清洗和整理,以保证数据的准确性。其次,在选择统计方法时,我们需要考虑不同的假设和变量,以确保我们的结论准确可靠。最后,我们还需要借助计算机软件来实现数据统计和可视化的呈现。
第四段:心得收获。
通过这次实践任务,我们小组认识到数学建模不仅需要理论知识,还需要具体的实践经验。我们学会了如何清洗和整理数据,如何选择适当的统计方法,并且掌握了一些实用的计算机工具来实现数据分析和可视化。此外,我们还学到了如何在小组中有效地沟通和协作,以确保任务的高效完成。此外,我们还意识到数学建模领域的研究是需要长期投入的,我们需要不断探索和学习,才能不断提高自身的能力和水平。
第五段:总结与展望。
总之,这次数学建模大学心得体会活动让我们深入了解了数学建模的理论与实践,并提高了我们分析和解决实际问题的能力。我们从中收获了很多,也必须不断努力,不断探讨,来提高自身水平,用于更好的服务社会。我们期待着将来有更多的数学建模实践机会,来挑战我们的能力和展示我们的成果。
实用数学建模实践心得(汇总16篇)篇十二
数学建模是现代应用数学中的一项重要技术,它可以将实际问题抽象为数学模型,并运用数学方法进行求解和分析。随着数学建模的应用场景不断扩大,越来越多的人开始了解和使用这一技术。我也通过参与数学建模比赛和实践项目,有了一些使用数学建模的心得体会。
首先,在实际问题中理解数学模型的意义是非常重要的。数学模型作为抽象工具,能够将复杂的实际问题简化为数学公式和方程。通过建立数学模型,我们可以从更高的角度来理解问题的本质,并用数学的方法进行求解。比如,在一次汽车行驶的过程中,我们可以建立关于汽车速度、油耗等因素的数学模型,从而帮助我们预测汽车的油耗量并优化驾驶策略。因此,理解数学模型的意义对于正确应用数学建模技术非常重要。
其次,选择适当的求解方法对于数学建模的成功至关重要。在解决实际问题时,我们常常面临多种求解方法的选择,如常规的代数求解方法、迭代方法、数值逼近方法等。不同的问题需要不同的求解方法,选择合适的方法能够提高解题效率和准确性。比如,在优化问题中,我们可以运用拉格朗日乘子法或者线性规划等方法,从而找到问题的最优解。因此,熟悉各种求解方法,并能够灵活运用,是使用数学建模技术的关键所在。
此外,合理的问题假设和精确的数据采集对于数学建模的成功也至关重要。在建立数学模型时,我们常常需要根据问题的实际情况进行合理的简化和假设。合理的问题假设可以使得模型更加简洁和易于求解,但也需注意假设不能过于简单化导致模型失去实用性。同时,精确的数据采集对于数学模型的准确性和可靠性也非常重要。在数据采集过程中,我们应尽量避免误差和主观因素的干扰,保证数据的真实性和准确性。因此,合理的问题假设和精确的数据采集是数学建模过程中必要的环节。
最后,在实际问题中多思考并与他人交流,能够有效提高数学建模的质量和效果。在数学建模过程中,我们常常遇到问题的复杂性和多样性,这时候多角度思考和与他人交流可以拓宽思维的空间,并能够发现问题的更多解决办法。通过与他人交流,可以借鉴他人的思路和经验,提高建模的质量和创新性。比如,在参加数学建模比赛中,我们常常需要与队友合作,共同思考问题并交流解决方法,这不仅能够加强团队的凝聚力,还能够从中获得宝贵的学习经验。因此,多思考并与他人交流是数学建模过程中的重要环节。
总之,使用数学建模技术需要正确理解模型的意义,选择合适的求解方法,进行合理的问题假设和精确的数据采集,同时多思考并与他人交流。通过不断的实践和学习,我深刻认识到数学建模的重要性和应用价值。今后,我期待在更多的实践项目中应用数学建模技术,为解决实际问题做出更大的贡献。
实用数学建模实践心得(汇总16篇)篇十三
计算机学院、软件学院级学生吴瑞红(保送为我院研究生)。
大一时听学长们讲数学建模竞赛,对他们有一种敬佩,对数学建模竞赛有一种渴望。这种渴望不是一定要拿个什么奖项,而是想体验一下这三天三夜的竞赛,提高自身能力。意想不到的是,我们荣获了全国一等奖。我们心里充满惊喜的同时也充满了感激。感谢老师和同学对我们悉心指导和鼓励;感谢学院和学校给我们提供物质和精神的帮助和支持。
一直以来,我们都认为我们是很平凡的一组。第一,我们都没有深入学习过数学建模,短短的个把月的学习时间让我们始终有点怀疑自己能否真正了解它。尽管,我们不是信心十足地开始了,但我们却没有放弃。我们坚持着从最基本的开始,一点点攻破。我们抱着能提高自己,学习知识的想法去对待这场竞赛。或许,正是我们这种平常心让我们把自己发挥得淋漓尽致,才有了最后的结果。有心栽花花不开,无心插柳柳成荫,这让我们明白一个道理:遇事不可太急功近利,那样可能会适得其反。
第二,我想说的是我们的团队。我们其实仅仅是临时组的一个队,甚至我们之间有的几乎没说过几句话,但这并不影响我们的合作。我们在一开始便进行了分工:选组长也是一个很重要的问题:他的作用就相当于计算机中的cpu,是全队的核心,如果一个队的leader不得力,往往影响一个队的正常发挥。由于身为班长的我具备了一定组织、协调和较强的决策能力以及对matlab较浓厚的兴趣,决定由我担任小组组长并负责编程。我的队友中有对数学比较感兴趣的于是由她负责进行算法的分析,另外一个队友负责论文。组长应该有较强的决策能力,在大家出现分歧时能果断地拿出主意,当队中有人信心动摇时(特别是第三天,人可能已经心力交瘁了),组长应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前功尽弃。注意有人说,团队需要磨合期,这是毋庸置疑的,但是如果你真的把自己当成其中的一员,努力融入其中,你会发现那原来是一件很简单的事情。记得,你们是一个团队,要相互支持,相互鼓励,要有相容的胸襟,要有合作的意识,要时刻记得你们是荣辱与共的,不要只注重个人得失。在比赛时,一个人的思考是不全面的,大家要一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要齐心才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
实用数学建模实践心得(汇总16篇)篇十四
第一段:引言(字数:150字)。
经济数学建模在当今社会发挥着重要的作用。我在学习这门课程的过程中,深深感受到了其应用的广泛性和高效性。通过经济数学建模,可以更好地分析和解决现实生活中的经济问题。在学习过程中,我对经济数学建模的方法和技巧有了更深入的理解,同时也认识到了其中的挑战和困难。在这篇文章中,我将分享我在学习经济数学建模中的一些心得体会。
第二段:模型建立(字数:250字)。
经济数学建模的第一步是模型建立。在这个阶段,我们需要明确问题的背景和目标,并根据实际情况选择适当的数学工具。一个好的模型应该简洁而又能准确地描述经济现象,并能预测未来的可能变化。在模型建立过程中,我学会了如何将实际问题转化为数学模型,并选择合适的数学方法和技巧来求解。这个过程需要我们有很强的抽象能力和逻辑思维能力。
第三段:数据处理(字数:250字)。
模型建立好后,我们需要收集并处理相关的数据。数据的准确性和完整性对模型的结果有着重要的影响。在数据处理过程中,我学到了一些统计分析的方法和技巧,例如数据的预处理、异常值的检测和纠正等。我也意识到了数据的可靠性和数据之间的相关性对模型结果的重要性。通过分析和处理数据,我可以更好地理解问题的本质,并得出更准确的结论。
第四段:模型求解(字数:250字)。
在模型建立和数据处理完成后,我们需要使用合适的数学方法和技巧来求解模型。常见的方法包括最优化、动态规划和概率统计等。在模型求解的过程中,我遇到了一些困难和挑战。有时候,模型的复杂度过高,求解需要耗费很长的时间和计算资源。为了解决这些问题,我学会了合理地分解和简化模型,使用合适的算法来加快求解速度。同时,我也学会了如何评估模型的效果和稳定性,以及如何在模型求解过程中进行误差分析和灵敏度分析。
第五段:模型评估(字数:300字)。
模型求解完成后,我们需要对模型的结果进行评估。评估模型的方法有很多,例如与已有的实际数据进行对比、用模型进行实际预测等。在模型评估的过程中,我体会到了经济数学建模的巨大潜力和实际应用的广泛性。合适的模型可以帮助我们更好地理解经济现象,并提供决策支持。然而,模型评估也暴露出了一些不足之处,例如模型的假设和变量的选择可能导致结果的偏差。因此,我们需要不断改进和完善模型,在实际应用中进行反馈和调整。
总结(字数:100字)。
通过学习经济数学建模,我深刻认识到了数学在经济分析中的重要性和作用。通过建立模型、处理数据、求解模型和评估模型的过程,我不仅提高了自己的数学能力和分析能力,也掌握了一些实际应用的技巧和方法。在未来的学习和工作中,我将继续努力学习经济数学建模的理论和实践,为解决经济问题贡献自己的一份力量。
实用数学建模实践心得(汇总16篇)篇十五
为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。
二、组织学生参加每年高教社杯全国大学生数学建模竞赛。
一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。
三、年度会员招收工作。
在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。
四、干事招聘会。
在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。
邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。
六、会员大会。
数学建模学习体会(2)海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。
七、西安电力高等专科学校第二届大学生数学建模竞赛。
为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。
为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。
九、大学生数学建模协会网站的建设与信息服务。
实用数学建模实践心得(汇总16篇)篇十六
数学建模是一门应用数学的学科,通过对实际问题的建模与求解,可以帮助人们更好地理解、分析和解决各种实际问题。作为一门新兴的学科,我在学习数学建模的过程中有了很多心得体会。
首先,数学建模是一个全新的学科,需要掌握一定的数学知识。在学习数学建模前,我首先需要掌握一定的数学基础知识,包括高等数学、概率论与数理统计等。这些数学基础知识是建立数学模型的基础,只有掌握了这些知识,才能更好地理解和应用数学建模的方法和技巧。
其次,数学建模需要具备一定的实际问题解决能力。在学习数学建模的过程中,我发现数学建模的关键在于解决实际问题。解决实际问题需要具备一定的实践能力和创新思维,只有将数学方法与实际问题相结合,才能得到切实可行的解决方案。因此,我通过参加实际建模竞赛和实践活动,提升自己的实际问题解决能力。
另外,数学建模需要不断的学习和实践。数学建模是一个不断学习和实践的过程,我深刻体会到了这一点。在学习数学建模的过程中,我不仅需要学习数学知识,还需要不断研究和了解各种实际问题,并应用数学方法进行建模与求解。通过不断的学习和实践,我能够不断地提高自己的数学建模能力,并取得更好的成果。
此外,数学建模需要团队合作。在实际建模过程中,我发现数学建模需要团队合作。解决实际问题需要不同领域的知识和专业技能,一个人很难完成所有的工作。团队合作可以发挥每个人的优势,将各种专业知识和技能有机地结合起来,提高工作效率和解决问题的质量。因此,我通过参加团队建模和合作项目,锻炼自己的团队合作能力。
最后,数学建模需要不断开拓思维和提高创新能力。在学习数学建模的过程中,我发现数学建模需要不断开拓思维和提高创新能力。解决实际问题需要灵活运用各种数学方法和技巧,并能够提出新颖的解决方案。因此,我通过自主学习、交流和思维训练,不断开拓思维和提高自己的创新能力。
总之,数学建模是一门应用数学的学科,通过对实际问题的建模与求解,可以帮助人们更好地理解、分析和解决各种实际问题。在学习数学建模的过程中,我不仅需要掌握一定的数学基础知识,还需要具备一定的实际问题解决能力,并进行不断的学习和实践。同时,数学建模也需要团队合作和开拓思维,提高创新能力。通过这些经历,我对数学建模有了更深刻的理解和认识。