教学工作计划需要细化每个学习模块的教学目标和教学策略,确保学生能够全面、系统地掌握知识。如果你不知道如何开始制定教学工作计划,不妨先参考以下范文,看看其他教师是如何做的。
最优分数和整数相乘教案范文(15篇)篇一
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
最优分数和整数相乘教案范文(15篇)篇二
(概括:整数乘法表示求几个相同加数的和的简便运算)。
(二)计算下面各题,说说怎样算?
++=++=。
同学之间交流想法:++==3××3=。
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=。
二、自主探索。
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1.读题,说说块是什么意思?
2.根据已有的知识经验,自己列式计算。
三、交流、质疑。
(一)学生汇报,并说一说你是怎样想的?
方法1:++===(块)。
方法2:×3=++====(块)。
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.。
区别:一种方法是加法,另一种方法是乘法.。
教师板书:++=×3。
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便.。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
++====,用分子2乘3的积做分子,分母不变.。
(五)提示:为计算方便,能约分的要先约分,然后再乘.。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.。
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变。
五、巩固、发展。
(一)巩固意义。
1.改写算式。
+++=()×()。
+++++++=()×()。
2.只列式不计算:3个是多少?5个是多少?
(二)巩固法则。
1.计算(说一说怎样算)。
×4×6×21×4×8。
思考:为什么先约分再相乘比较简便?
2.应用题。
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至。
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画。
配上镜框,需要木条多少米?
(三)对比练习。
1.一条路,每天修千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业。
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.。
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:++===(块)。
用乘法算:×3=++====(块)。
答:3人一共吃了块.。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.。
最优分数和整数相乘教案范文(15篇)篇三
教学难点:
教学过程:
一、复习引入。
1.复习分数乘整数的意义和计算方法。
2.复习求一个数是另一个数的几分之几。
二、展开。
1.操作活动。出示活动内容和小组活动要求。
(1)拿出纸条,先折出它的,再用涂色表示它的的`长度。
(2)用尺量一量涂色部分的长度是多少厘米。
(3)想一想可以怎样列式来验证你的结果。
(4)组内交流你的想法。
2.汇报。
(1)因为9÷12=,所以12×=9。
(2)根据汇报得到算式:16×=12、20×=15、24×=18。
(3)仔细观察这四个算式,各表示什么意义?
(4)这几个算式都有什么特点?
3.揭题:今天我们就来研究整数乘分数。
三、教学例【1】、【2】。
1.教学例【1】。
(1)出示例【1】。用线段图来表示数量关系。
(2)汇报、交流线段图。
(3)根据线段图列对应关系。
(4)要求所对应的具体量,就是求什么?
(5)列出算式。
(6)如何计算(写出过程,说明算理)。
2.小结:求一个数的几分之几用乘法计算。
3.教学例【2】。
(1)试列式。
(2)比较算式的区别。
(3)补充说明计算过程中能约分要先约分。
四、巩固与提高。
五、课堂总结。
最优分数和整数相乘教案范文(15篇)篇四
教学目标:
1、知识目标:
使学生理解分数乘以整数的意义与整数乘法相同。
2、能力目标:掌握分数乘以整数的计算法则,能够正确地进行计算。
3、创新目标:使学生学会用不同的方法解决同一个问题。
4、德育目标:培养学生的讨论意识和交流意识。
教学重点:本节的教学重点是使学生理解分数乘以整数意义,因此在教学中应注重让学生通过讨论发现并总结计算出方法并能正确运用先约分再相乘的方法进行计算。
教学难点:能正确运用先约分再相乘的`方法进行计算。
教具准备:一个大西瓜。通过切西瓜的实物演示,帮助学生理解分数乘以整数的意义与整数乘法的意义完全相同。
教学过程:
一、导引目标。
1、复习:整数乘法的意义是什么。
2、思考:你能很快计算出下面算式的结果吗?
+++++++++=。
3、组织研究。
(1)通过以上的观察和计算,你发现了什么?
(2)小组之间合作交流,自学例1。
二、创设条件。
(一)指名到台上,按要求切西瓜。
1、将西瓜平均分成两份。问:
(1)两份合在一起,一共是几块?
(2)怎样列式计算?
+===1。
×2===1。
2、将西瓜平均分成四份。问:
(1)四份合在一起,一共是几块?
(2)怎样列式计算?
+++===1。
×4===1。
3、将西瓜平均分成八份。问:
(1)八份合在一起,一共是几块?
(2)怎样列式计算?
+++===1。
×8===1。
三、引导创新。
计算×3=思考可以有几种计算方法,哪一种更简便一些?
四、反思小结。
1、独立完成第2页的做一做。
谈谈自己本节课的收获,还有哪些知识没学明白。
最优分数和整数相乘教案范文(15篇)篇五
1.算一算。
37×2=()211×5=()。
2.填一填。
(1)18+18+18+18+18=()×()=()。
(2)27×4=()+()+()+()=()。
(3)311+311+311=()×()=。
3.算一算。
27×25×32018×4。
916×247×821310×15。
4.一杯牛奶的.质量是34千克,5杯牛奶的质量是多少千克?
6.一根钢管锯成2段需要分钟,如果锯成11段,那么需要多少分钟?
最优分数和整数相乘教案范文(15篇)篇六
1、知识目标:
使学生理解分数乘以整数的意义与整数乘法相同。
2、能力目标:掌握分数乘以整数的计算法则,能够正确地进行计算。
3、创新目标:使学生学会用不同的方法解决同一个问题。
4、德育目标:培养学生的讨论意识和交流意识。
教学重点:本节的教学重点是使学生理解分数乘以整数意义,因此在教学中应注重让学生通过讨论发现并计算出方法并能正确运用先约分再相乘的方法进行计算。
教学难点:能正确运用先约分再相乘的方法进行计算。
教具准备:一个大西瓜。通过切西瓜的实物演示,帮助学生理解分数乘以整数的意义与整数乘法的意义完全相同。
1、复习:整数乘法的意义是什么。
2、思考:你能很快计算出下面算式的`结果吗?
+++++++++=。
导出课题“分数乘以整数”师板书课题。
3、组织研究。
(1)通过以上的观察和计算,你发现了什么?
(2)小组之间合作交流,自学例1。
讨论归纳分数乘以整数的意义和法则。
(一)指名到台上,按要求切西瓜。
1、将西瓜平均分成两份。问:
(1)两份合在一起,一共是几块?
(2)怎样列式计算?
+===1。
×2===1。
2、将西瓜平均分成四份。问:
(1)四份合在一起,一共是几块?
(2)怎样列式计算?
+++===1。
×4===1。
3、将西瓜平均分成八份。问:
(1)八份合在一起,一共是几块?
(2)怎样列式计算?
+++===1。
×8===1。
计算×3=思考可以有几种计算方法,哪一种更简便一些?
1、独立完成第2页的做一做。
谈谈自己本节课的收获,还有哪些知识没学明白。
最优分数和整数相乘教案范文(15篇)篇七
教学目标:通过自主探索理解分数乘整数的意义。
通过有效练习初步理解分数乘整数的计算法则(会分别进行简单的小数、分数(不含带分数)加、减、乘、除运算及混合运算(以两步为主,不超过三步))。
体验探索学习的乐趣。
(学生通过经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能)。
重点与难点::分数乘整数的意义和计算法则。
课前准备:。
板块教师活动学生活动教学目标及达成情况。
一、
创设情境。
二、
组织探究。
分乘整数的算理数。
复习:1、5个12是多少?怎样列式?(多媒体示题)。
2、16+26+36=。
29+29+29。
教学例1。
教师引导学生概括出书上。
的结语。(分母不变,只用分子与整数相乘,能约分时,先约分再计算)。
通过复习连加巩固乘法的意义及同分母分数加法计算方法及意义。
通过乘法算式与连加法算式的联系理解分数乖整数的算理和归纳出分数乖整数的计算方法。
三、
练习1、做“练一练”第1题。
2、做“练一练”第2题。
3、做。
练习八第3-5题。
通过练习明确求几个几分之几相加的和,可以用乘法计算。进一步巩固。
分数乖整数的意义和计算方法。
四、全课小结今天学习了哪些内容?
反思重建。
最优分数和整数相乘教案范文(15篇)篇八
《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。
本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。
知识与能力:
在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感态度与价值观:
引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程
最优分数和整数相乘教案范文(15篇)篇九
《分数与整数相乘》这是学生首次接触分数乘法。分数与整相乘在运算意义上与整数乘法一致,因而算法是教学的重点。
《课程标准》强调从学生的熟悉的生活经验和学习经验,让数学学习成为学生“生动活泼、主动发展和富有个性的过程”,本课重视了让学生成为学习的主人,积极主动地探究学习新知,体验成功的快乐!
我认为教者以下几点做得比较好:
1、结合现实的问题情境,引导学生理解分数乘法的意义。计算课是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设了班里同学为教师节做装饰花的实际情境,引导学生明白分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3/10×3的结果。
2、借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?这样做能够很好的突出重点,突破难点,要让学生不仅知其然,更重要的是知其所以然。教材的例题侧重体现加法和乘法之间的转化,板书对照清楚明晰,学生很容易发现乘的计算方法,。
3、练习设计具有针对性,多样性,激励性,生活性。在本环节学生的技能得到了巩固和提升,特别是两个常见的改错题引发学生自我反思、自我完善计算方法,已达到算法的自主优化。
最优分数和整数相乘教案范文(15篇)篇十
1、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2、使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的`思维。
1、使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
一、铺垫孕伏。
(一)出示复习题。
1、口答:
5个12的和是多少?
10个23的和是多少?
4个0。5的和是多少?
2、整数乘法的意义是什么?
3、计算:
计算时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)。
二、探究新知。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃个,3人一共吃多少个?
指名读题。
1、分析演示:
每人吃个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了个,三个人吃了几个个?使学生从图中看到三个人吃了3个个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书:++===(个),(教师将3个双层扇形图片拼成一个一块蛋糕的图片)。
2、观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书:。再启发学生说出表示求3个相加的和。
3、比较和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
4、概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)。
最优分数和整数相乘教案范文(15篇)篇十一
“分数乘整数”在练习中,50%的学生喜欢用分数加法的计算方法来做分数乘法。学生利用式题,不但总结出了分数乘整数的计算方法,而且知道了算理,真正做到了算理与算法相结合。
基于这两者天壤之别,笔者有了深深的感触,上述两个案例让我想到一个相同的问题,就是我们常说的备课之先“备学生”到底备到什么程度?对于学生的知识前测,教师心中有多大的把握?没有对学情准确的侦察”,便绝对不会”打赢”有效教学乃至高效教学这一胜仗。很多教师在备学生的时候,是借用别人的眼光来估计自己的学生,看教参上是怎么说的。教参说这时的学生应该具有什么样的知识经验,教师便坚信自己的学生也定是如此了。没有或者很少考虑到虽然是同一个年龄段的孩子,但还有诸多不同的因素:也许你的学生是后进的,他的基础没你想象的那么牢固;也许他是绝顶聪明的,学习进度已经超过好多课业了。
如上述案例中,关注学生转化的思想就是本课时教学的重中之重.数学知识有着本身固有的结构体系,往往是新知孕伏于旧知,旧知识点是新知识点的生长点,数学教学如何让知识体系由点到线,线到面,使知识结构“见木又见林”是十分必要的.。案例1从整数乘法迁移到分数乘整数,想法是可取的,但整数乘法的意义在二上年级就已经出现,而且教材中没有出现整数乘法的抽象表达方式(即整数乘法表示求几个相同加数的和),对于五下年级的学生来说,遗忘程度可想而知。而案例2中,以五上年级的分数加法为基础,让学生自由探索,效果是非常明显的。转化是需要条件的,只要“跳一跳”,就能摘到“桃子”,学生才会去尝试。
今天这节课的算理看似简单,其实理解还是有困难的.根据学生的认知心理,在遇到一个陌生的问题,如”1/5×3=?”时,学生对算法的兴趣远远胜于算理.因为算法可以直接得到结果。一旦知道算法,多数学生会对算理失去兴趣。甚至为了考试成绩去死记硬背算理,算法与算理完全脱离。那么我们实际上不是教数学,而是在教一门计算程序:不是在培养研究者,而是在训练操作工。这与”学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的思想方法和必要的应用技能”相违背的。
数学思想方法内容十分丰富,学生一接触到数学知识,就联系上许多数学思想方法。寓理于算的思想就是小学数学中的基本思想方法。在教学时,把重点放在让学生充分体验由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和对算法的切实把握。小学是打基础的教育,有了算理的支撑,算法才会多样化,课堂才会更开放。
课标中,原来讲“双基”,现在变成“四基”,多了基本思想、基本活动经验,笔者认为,只有具备了基本思想、基本活动经验,才能在思维上促进基本知识、基本技能的发展。不但教给学生一个表层的知识,更要给学生思维的方法与思想。
最优分数和整数相乘教案范文(15篇)篇十二
一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。
二、口算,感受分数乘整数的含义
1、读出算式,并口算出结果:
1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)
2、感受分数乘整数的意义
30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。
三、尝试计算,归纳方法
1、尝试计算。
让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。
2、自己选择练习
自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。
3、概括分数成整数的计算方法
让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。
总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。
同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:
一、给孩子鼓劲儿,让孩子看到希望
告诉他们“我们这一学期数学课主要学习的都是有关分数的知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!
二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭
我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。
三、理解分数乘法含义、尝试计算
从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。
同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。
最优分数和整数相乘教案范文(15篇)篇十三
一、利用已有知识引导学生实现正迁移。
《分数乘整数》是分数乘法单元的第一课时,本课主要让学生通过自主探索,了解分数与整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法。而分数与整数相乘的意义与整数相乘的意义相同,所以这节课在引入课题时我设计了下面的两道习题:(1)做一朵绸花要30厘米绸带,小丽做3朵这样的绸花,一共用多少厘米绸带?(2)做一朵绸花要0.3米绸带,小红做3朵这样的绸花,一共用多少米绸带?通过让学生列式并追问为什么都用乘法计算,激活学生已有的对整数乘法意义的认识。然后再通过改题呈现例1:做一朵绸花要米绸带,小芳做3朵这样的绸花,一共用几分之几米绸带?学生顺理成章地列出了例1的乘法算式,通过我追问这题为什么也用乘法计算?学生自然地将整数乘法的意义迁移到分数乘整数的意义中,实现了知识的正迁移。
二、尊重学生的“数学现实”,加强算法的探究。
在学习本课之前,其实班里已经有许多学生大概知道了分数乘整数的计算方法,但对于为什么要这样算就不清楚了。如果再按照一般的教学程序(呈现问题——探讨研究——得出结论)进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。教师的主导作用在于设计恰当的教学形式,调动不同层次的学生的学习兴趣。于是在教学时×3的算法时直接问:你知道怎么乘吗,你认为整数3与分数的什么相乘呢?我重点在让学生明白为什么要这样乘。我抓住这一质疑点,提出:“为什么只把分子与整数相乘,分母不变”接下来的教学就引导学生带着“为什么”去探索。由质疑开始的探索是学生为满足自身需要而进行的主动探索,因此学生在课堂上迫不及待地,积极主动地进行讨论,从不同的角度解决疑问。
三、实现教学的个性化,发展学生的思维。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过计算分数单位的个数来理解;有的学生讲清了分母不能与整数相乘,只能将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。
最优分数和整数相乘教案范文(15篇)篇十四
1.使学生通过自主探索,了解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数乘整数的计算方法。
2.使学生在探索分数乘整数计算方法的过程中,运用已有知识和经验主动进行探索性思考,并进行分析和归纳。
3.在探索计算方法的过程中,体验探索学习的乐趣,获得成功的体验。
理解分数乘整数的意义及分数乘整数计算方法的推导过程,能准确地进行计算。
多媒体课件
一、创设情境,自主探索
谈话:同学们,学校要举行一次小手艺展示活动,班里有一位小强同学也想参加。看,他准备制作两个漂亮的风筝,这两个风筝还带有长长的尾巴呢。可就在制作这个风筝尾巴的时候,小强遇到困难了,咱们都来帮帮他,好吗?(课件出示信息)
谈话:从图中你收集到了哪些数学信息?
谈话:你能根据这组信息,提出一个数学问题吗?全班交流,
板书学生所提有价值问题:
做小鸟风筝的尾巴,一共需要多少米布条?(板书)
(2)做小鱼风筝的尾巴,一共需要多少米布条?(板书)
【设计意图】创设贴近学生生活实际的情境,以小强遇到困难了,我们都来帮帮他为契机,激发学生的学习兴趣,调动起学生自主探究解决问题的热情,为学生理解、感悟知识奠定基础。
二、算法交流,分析比较
(一)探索分数乘整数的意义。
1.独立思考,自主探索
谈话:求做小鸟风筝的尾巴,一共需要多少米布条,你会列式吗?
学生可能会出现以下算式:(根据学生的回答课件随机出示)
xxxxx
追问:你为什么这样列式?
相加的和,也可以用乘法计算?
明确:相同整数连加可以用乘法算式表示,由此可以联想到相同分数连加也可以用乘法算式表示。联想是一种很有意义的学习方法。所以分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
谈话:比较
这组乘法算式,跟我们以前学的有什么不同?
导出课题:分数乘整数(板书)
【设计意图】分数乘整数的意义是为探究分数乘整数的计算方法服务的,在教学中,从做风筝尾巴要用多少米布条的实际问题为起点,引出分数乘整数的计算问题。把原来的乘法概念扩展到分数范围,激活了学生已有的知识经验,沟通了新旧知识的联系,初步了解了分数乘整数的意义。
(二)探索分数乘整数的计算方法。
1.独立计算感知算法。
谈话:你能尝试计算
1/2×5吗?请你在练习本上独立完成,写完之后在小组内交流一下自己的想法。
2. 算法交流,分析比较
谈话:你能交流一下你的算法吗?学生可能会出现以下方法:
(根据学生回答课件随机出示)
三、沟通优化,促进发展。
1.(1)算法的初步优化
谈话:你会计算7/18×9吗?请用自己喜欢的方法计算。
学生尝试独立计算后全班汇报交流。(根据学生回答课件随机出示)
谈话:比较一下这两种方法,你有什么感受?
小结:用相加和转化成小数的方法在计算中都存在很大的局限性,看来直接相乘的方法简便,易于计算。学生小结分数乘整数的计算方法。
(2) 探索计算中的简便方法
谈话:你能独立解决做小鸟风筝的尾巴,一共需要多少米布条这个问题吗?(学生独立算,然后小组交流)。
最优分数和整数相乘教案范文(15篇)篇十五
:使学生理解分数乘以整数的意义,在理解算理的基础上掌握分数乘以整数的.计算法则,并能正确运用“先约分再相乘”的方法进行计算。
1、5个12是多少?
用加法算:12+12+12+12+12。
用乘法算:12×5。
问:12×5算式的意义是什么?被乘数和乘数各表示什么?
2、计算:
问:有什么特点?应该怎样计算?
3、小结:
(1)整数乘法的意义,就是求几个相同加数的和的简便运算。被乘数表示相同的加数,乘数表示相同的加数的个数。
(2)同分母分数加法计算法则是分子相加作分子,分母不变。
教学例1。
出示例1:小新爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
用加法算:(块)。
用乘法算:(块)。
问:这里为什么用乘法?乘数表示什么意思?
都是求几个相同的和的简便运算。学生齐读一遍。
练习:说一说下面式子各表示什么意思?(做一做第3题。)。
问:那么分数乘以整数方法应该是怎样算?(通过观察例1,得出分数乘以整数的计算法则)。
1.第2页做一做。
2.练习一。