教学计划可以帮助教师合理筹备课堂教学,提前准备教学用具和教学资料,确保教学顺利进行。看看下方的教学计划范文,你可以了解一些常用的教学方法和教学组织形式。
最优圆形的面积教学设计(模板18篇)篇一
1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3.渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。
选择有效的计算方法解决实际问题。
ppt课件、简单图形的面积整理表、铅笔和三角板等学习用具、彩粉笔。
一、创设情境,生成问题。
老师准备了几幅漂亮的图片,我们一起来欣赏一下,好吗?
图一图二图三。
请大家仔细观察,这些物品的表面有哪些我们已经学过的图形?(逐一分析,然后重点展示中队旗)它们有什么共同特点呢?(学生口答)。
介绍:上面这些图形都是由几个简单图形组合而成的,这样的图形叫组合图形。
二、探索交流,解决问题。
1.谈话引入。
师:我现在想要做一面中队旗需要多少布呢?也就是求什么?
生:求中队旗的面积,也就是计算出组合图形的面积。
2.独立思考,分组讨论。
师:请大家独立思考:组合图形可以转化成哪些学过的图形,怎样计算出组合图形的面积?有了想法之后,和你的同桌说一说。
生独立思考,同桌交流。
3.汇报交流。
(1)师:谁来说一说你的想法?
生:分割成两个梯形。
生:能,因为梯形的上底、下底和高我们都能知道。
(2)师:大家想想,还有不同的做法吗?
生:能,用长方形的面积减去三角形的面积,长方形的长和宽,三角形的底和高都是已知的。
《组合图形的面积》教学设计《组合图形的面积》教学设计(3)生:分割成一个大梯形和一个三角形。
(4)生:分割成一个正方形和两个三角形。
生:能求出组合图形的面积。用正方形的面积加上两个三角形的面积。
4.独立计算。
师:下面就请大家选择一种你喜欢的方法,快速的计算出组合图形的面积。
指名板演。集体订正。
5.小结。
师:刚才我们用好几种方法求出了中队旗的面积,这些计算方法有什么共同特点呢?
生:都是把一个组合图形转化成几个简单图形。
师:数学中我们习惯用分割法或添补法,先用辅助线把一个复杂的组合图形转化成几个比较简单的图形的和或差。如果没有要求用多种方法的,我们尽量选择最简单的方法来计算。画辅助线时要注意画虚线,还要用铅笔和直尺作图。
板书:转化成简单图形。
6.我们学习了这么多组合图形知识,请你说一说生活中哪些地方有组合图形。
三、巩固应用,内化提高。
1.师:同学们的表现真了不起。咱们学校有个老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是用平方米来计算的,请你们帮忙算一算。(课件出示例4)。
(先让学生思考,再动手计算。然后交流汇报。)。
方法一:
这个组合图形分成一个正方形和一个三角形,分别计算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方形面积后,再减去两个小三角形的面积。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。
师:请同学们观察这几种解法,它们有什么相同的地方?
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。
师:非常感谢大家为老师解决了难题。在日常生活中,到处都有组合图形,我们计算面积时,先用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了。这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
师:图中菜地由哪些简单图形组成的?计算每个简单图形的条件是多少?
学生独立计算,集体订正。
四、回顾整理,反思提升。
师:这节课你有什么收获?
分割法或添补法(转化):分解成简单图形。
最优圆形的面积教学设计(模板18篇)篇二
1、通过拼图活动,让学生了解组合图形的特点。
2、在自主探索的活动中,理解计算组合图形面积的多种方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中组合图形的实际问题,同时通过各活动培养学生的空间观念。
重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。
难点:选择有效的方法解决问题。
本节课是在学生原有的求基本图形面积基础上,进一步探讨研究组合图形的面积,也是日常生活中经常需要解决的问题。因此,我设计时主要是让学生自主探索,在实际生活情境中领会转化的数学思想,先把基本图形拼成组合图形,再独立找出计算时所需要的条件,进一步体会、掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法进行计算,从而解决实际问题。
一、激发兴趣、复习铺垫。
学生落座后。
学生介绍:这个图案是由()()()拼成的。
师:这几幅作品有什么共同的特点呢?(kj出现拼出的图形)。
生1:都有三角形。
师:这是你的发现,还有呢?
生2:都是拼成的。
师:还有吗?
生3:都是以前学过的图形拼成的。
生:都是用以前学过的基本图形拼成的,
师:说的真好,真是一个善于观察的孩子!
师:像这样,由几个简单的基本图形拼成的图形,我们就叫它组合图形。(显示只有线条的图形)。
出示课题:组合图形。
问学生:这是什么图形?(组合图形)为什么?(它是由几个简单的基本图形拼成的)真是个聪明的孩子!谁能说说,这个组合图形是由哪几个基本图形拼成的?(学生回答后,点击课件显示虚线)。
师:好,这节课我们就一起来学习(补充课题:)组合图形的面积。
二、新授。
(kj)出示房屋的图片,再出示侧面墙。
生:房子的侧面。
师:老师要粉刷这面墙,要买多少涂料?需要知道什么呢?
师:这个组合图形是由一个三角形和一个长方形组合而成的。求墙壁的面积就是把三角形面积和长方形面积相加。
师:要求它的面积,我们需要知道什么条件?
生:回答。
有的说测量所有的边,有的说不用全测量。
(预设)师:哪些数据我们必须测量,哪些是没有必要的?
师:三角形的底为什么不测量呢。
师:他说的你同意吗,谁再来说说。
师:看来在解决问题时,只有善于思考,才能找到更简洁的办法。
师:根据同学们的讨论,老师已经把数据测量出来了,请你计算出这面墙的面积(学生独立完成)。
师:谁愿意来汇报汇报。
(让学生利用投影)说出计算过程,并给予评价,强调注意单位名称和答题。
生:计算一下客厅的面积就可以了。
师:那就请同学们在练习纸上画一画,再算一算吧。
学生汇报。
师问:哪个小组愿意汇报?
1、生:我们是将这个组合图形分成两个长方形。
生:因为这个图形不能直接求它的面积,只有把它转变成以前学过的平面图形才能计算它的面积。
师:真会动脑筋!(指课件)是的,当不能直接求一个组合图形面积时,可以将它转化成以前学过的基本图形来计算。(板书:转化。)。
师:还有谁想到这种方法了。你们真是跟老师心有灵犀,老师也想到了这种方法。(贴)。
还有其他方法你想说说吗。
2、生:我是在这个组合图形的右上角补上一个正方形,使它变成一个大长方形。
生:我也是认为不能直接求这个组合图形的面积,所以先把它转化成长方形,再减去补上的小正方形的面积就是组合图形的面积。
师:剪掉的是正方形吗?你怎么知道的?
师:这位同学考虑问题很周全!他想到了这种方法,
还有其他想法吗?
3、生:我的方法是将这个组合图形分成一个长方形和一个正方形。
师:这也是一个很好的想法,还有不一样的方法吗?
4、生:我的方法是将这个组合图形分成两个梯形。
师:这个主意非常好?哪个小组还想还有补充?
5、生:我们小组同学把这个组合图形分成了2个长方形和一个正方形。、
6、生:我们把这个组合图形分成了2个三角形和一个梯形。
师:在能分出两个基本图形就能够求出组合图形面积的情况下,还有必要分第三个吗?
大家真是善于动脑的孩子,还哪个小组想汇报?
7、生:我们的方法是把这个组合图形剪开,把它拼成一个长方形。
师:你是怎么知道把上面的小长方形剪下来,移到右边就正好能拼成一个大的长方形呢?
师:这也是一种好方法,(边说边剪,贴到黑板上)。
学生说理由。
生:哪几个哪几个是一类,(把同一类的放到一起,)。
师:同学们把这些归为了一类,那我们把这样的方法叫做分割法。
最优圆形的面积教学设计(模板18篇)篇三
三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。
学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。
1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。
2、通过操作使学生进一步学习用转化的思想方法解决新问题。
3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。
4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。
理解并掌握三角形面积的计算公式。
理解三角形面积的推导过程。
演示讲解、指导实践。
学法:小组合作、动手操作。
三角形卡片、多媒体课件
一、情境引入
师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)
[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。
二、探究新知
1、复师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?
师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。
[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。
2、第一次操作实践
师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)
3、交流反馈
师:同学们都拼好了,谁来说说你是怎样拼的?
最优圆形的面积教学设计(模板18篇)篇四
梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。
【教学目标】。
1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。
2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
和现实生活的密切联系,体会学数学、用数学的乐趣。
【教学重点、难点】。
教学关键:
怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。
教具:
课件、梯形卡纸。
学具:。
剪刀、各种不同形状的梯形卡纸。
教学过程:
一、课前复习。
同学们,之前我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)。
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)。
二、探索转化:
1、引导学生提出解决问题方向:
过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。)。
2、动手转化:。
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)。
小组活动:
(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。学生可能出现的情况:。
(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)。
3、公式推导:
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。)。
三、应用公式解决问题。
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。)。
四、巩固练习。
1、选择(进一步明白求梯形面积公式的条件)。
2、是非判断题。(判断出对错并且说出原因,提高学生对新课的理解。)。
3、我最聪明。(拓展提高)。
五、反思总结,拓展延伸。
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
3、完成课内作业。
现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)。
【教学反思】。
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、动手操作,培养探索能力。
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
二、发散验证培养解决问题的能力。
最优圆形的面积教学设计(模板18篇)篇五
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以至用的目的。
最优圆形的面积教学设计(模板18篇)篇六
三角形的面积是在学生掌握了三角形的特征以及长方形、正方形面积计算的基础上进行教学的。通过对这部分内容的教学,使学生理解并掌握三角形面积计算公式,会应用公式计算三角形的面积,同时加深三角形与长方形、正方形之间内在联系的认识,培养学生的实际操作能力。进一步发展学生的空间观念和思维能力,提高学生的数学素养。
在学习三角形的面积这一内容前,学生已经认识了三角形的特征;在学习长方形面积、正方形面积以及求组合图形的面积时,已经学会割、补、移等方法,也学会了把未知的学习问题转化为已知的问题。因此在教学三角形的面积这课时,学生已经具备了一定的知识准备和能力基础。
1、经历三角形面积公式的推导过程,理解公式的意义。
2、理解三角形的底和高与“被转化长方形”长和宽之间的关系。
4、培养学生运用所学知识解决简单的实际问题的能力,体验数学应用价值,使学生感受到数学就在身边。
理解三角形是同底(长)等高(宽)长方形面积的一半。
一、导入阶段。
通过故事情景产生生活中三角形比较大小的问题:
2、采用哪些方法可以比较呢?
小结:运用透明方格纸来比较三角形的大小是一种方法,但你感觉怎样?
二、探究阶段。
(一)画三角形。
1、每个学生拿出准备好的长方形纸,按要求画三角形。
操作说明:
(1)以长方形纸的一边作为三角形的底边。
(2)以对边的任意一点作为三角形的顶点。
(3)连接顶点与对面的两个角。
(4)你画了一个什么样的三角形?
2、大组交流。
4、观察已画三角形与长方形之间的特殊关系。
(二)实验。
1、剪拼三角形。
操作说明:
(1)剪下你所画的三角形。
(2)将剩下部分拼到剪成的三角形中。
思考:剩下部分拼成的三角形是否与剪成的三角形一样大?
(3)填写实验报告。
2、学生完成报告后交流。
(三)归纳。
根据学生的实验得出结论:
(1)请学生用一句话来概括。
(2)用数学的方式来表示:三角形面积=相应长方形面积/2。
(3)根据长方形的面积公式,推导三角形的面积公式。
三、运用阶段:
1、教学例1。
(1)分别测出3个三角形的底与高,作好记录。
(3)交流。
拓展:找出下列图形中面积相等的两个三角形,为什么?
四、总结。
这节课我们学习了什么?2、计算三角形面积要知道那些条件?
最优圆形的面积教学设计(模板18篇)篇七
教学内容:
人教版小学数学教材五年级上册第95页主题图、96页例3、第96页做一做,
教学目标:
2、过程与方法:能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
3、情感态度与价值观:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神,获得数学学习的乐趣。
教学重点:
掌握梯形面积的计算公式,并会用公式解决实际问题。
教学难点:
理解梯形面积公式推导方法的多样化,体会转化的思想。
考点分析:
教学方法:
游戏引入新知讲授巩固总结练习提高。
教学用具:
课件、多组两个完全相同的梯形。
教学过程:
一、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
二、通过旧知迁移引出新课。
教师:同学们还记得平行四边形和三角形的面积怎么求吗?
1、指名能说出平行四边形面积公式及三角形面积公式。并能简要说出面积公式推导过程。
三、揭示课题;
根据学生的回答,引出新课,梯形的面积。
四、新知探究。
1、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到求图形面积的计算方法,今天我们要研究的梯形面积,可以怎样转化呢?下面我们就来实践操作一下吧。
2、请同学们打开学具袋,看看里面的梯形有什么特点?
最优圆形的面积教学设计(模板18篇)篇八
本节课室是学生在学习了多边形面积的基础上进行的一节复习课。本节课通过学生回忆所学过的所有平面图形的面积计算公式的推导过程,巩固学生对计算公式的理解和记忆,并通过图形之间的内在联系构建知识网络图,是学生明白这些图形不是孤立存在的,而是有联系的,在网络图的构建过程中,从单个图形,连成串,再连成片,从而使知识系统化,留给学生一个整体印象,而不是分散的记忆。最后通过由浅入深的练习题,使学生所学的知识得到进一步升华。
根据教学内容,我把教学目标设定为:
1、回忆所学的平面图形的面积推导过程,弄清图形面积之间的内在联系,巩固学生对面积计算公式的理解和记忆。
2、通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。
3、让学生通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣,以及良好的学习习惯和学习态度。
结合教学目标的设计,我把本节课重点是:通过整理知识网络图进一步发展学生的空间观念,提高学生分析和综合概括的能力。难点是:通过灵活运用知识解决实际问题,提高不同层次学生解决实际问题的能力。
根据本课的教学内容,本课采用先整理后练习的复习模式。
本课的指导思想是发挥学生的主题作用,引导学生自主学习,使不同学生在数学课上得到不同的发展。《课标》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式;学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本课在回忆—整理—应用的教学环节中,通过教师引导和点拨,提高学生的归纳整理知识的能力,并充分调动了学生的学习积极性,从而提高了学生运用所学的知识解决问题的能力。
教学过程本节课主要分为五个教学环节:
(一)整理和复习。
1、回忆课的开始,我让学生回忆学过的平面图形的面积,想到哪个说哪个,给了学生选择的余地,提高学生回答问题的兴趣。然后让学生回忆推动过程时,采取了先让同桌交流的方法,这是因为我分析学生可能会想到不同图形的面积推导公式,为了照顾不同层次的学生,让学生能人人动口,提高学生的语言表达能力。
2、整理在整理的过程中,学生边说,我一边用课件演示,空间想象能力强的学生可以闭上眼睛在头脑中演示这个过程,空间想象能力弱的学生,可以借助多媒体来回忆,以便帮助他们更好的理解记忆面积公式。
(二)构建知识网络图构建知识网络图是课前我比较担心的,我不知道学生会把知识网络图构建成什么样子。虽然课上在我的引领下这样比较好控制,但是为了照顾不同层次的学生,我把这项工作放在了课前,先让学生在家里整理好,这要就避免了学生之间相互模仿,无法体现个性;再通过课上的回忆让学生自己修改,使学生逐步学会整理归纳的方法;最后同学之间交流,完善知识网络图。在这个环节,面对学生构建的知识网络图,只要有道理我就会给予肯定,这样才能使学生敢于发表自己的意见,体现个体差异,增强自信心。
(三)解决问题在解决问题的过程中,我用了羊村村长领着大家去羊村参观这一情境,充分调动了不同层次学生的学习积极性。要想去羊村参观就得闯关成功,这三关分别针对不同方面:第一关针对的是我们班的学困生,这些题让他们回答,可以使他们获得成功的体验,帮助他们树立自信心,提高学习数学的兴趣;第二关考验学生是否能灵活运用面积公式,针对的是中等学生;第三关是对学生在面积计算中经常出现错误的地方进行针对性练习,面向全体学生,以提高做题正确率。闯关成功后,计算玻璃的面积,是解决实际生活中的问题,让学生体会到数学与生活的联系。这块玻璃是一个组合图形,既可以用分割法计算,又可以用添补法计算,学生自己动手分一分、画一画,用自己的方法计算,充分体现了学生的个体差异。为了帮助学生理解,我制作了课件进行演示,直观形象,针对学困生降低了难度。
(四)课堂作业课堂作业的设计也充分考虑到了不同层次的学生,第1题和第题较为简单,学优生做完后,给出了一道思考题,这道题为学有余力的学生准备。
(五)小结今天我们复习了多边形的面积,并利用图形之间的内在联系制作了知识网络图,还运用所学帮助羊村解决了实际问题,在这里懒羊羊代表羊村谢谢大家,带给大家一首好听的歌,请大家伴随着歌声下课。总之,我认为要想上好复习课,提高课堂有效性,就应该整体把握教材,采取合适的复习形式,关注学生的个体差异,从教学设计、教学方式、方法,以及练习题的准备等方面都要考虑到不同层次的学生,使学生通过自主参与、合作交流,不同学生得到不同的发展。真正体现新《课标》所说的人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展。以上是我个人对数学复习课教学的一点感触,不妥之处,请老师们多批评指正。
最优圆形的面积教学设计(模板18篇)篇九
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
二、教材分析。
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
三、学校及学生状况分析。
我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
(一)观察动画,复习旧知,引出新知。
1、观察动画,分析引入。
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)。
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)[板书:基本图形]。
师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]。
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)。
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)。
(二)动手拼图,初探方法。
1、自拼图形,分析要素。
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
(学生活动,教师巡视,指导画高。)。
2、展示图形,分析条件。
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)。
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)。
3、打开思路,探索面积。
生:分另计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
(学生叙述,教师板书计算过程如下。)。
师:下面,请每个小朋友试着求出自己所拼的组合图形的面积。
(学生分别计算自己所拼的图形组合的面积,并进行交流。)。
生:分别计算几个基本图形的面积,然后相加。
(三)拓展方法,发展思维。
师:刚才同学们的回答特别精彩,想法也非常巧妙。现在,有个叫小华的同学他家里面要装修,计划在客厅铺地板(媒体出示课本第75页的客厅平面图)。
师:请你估计他家至少要买多大面积的地板。
(学生小组讨论、交流)。
师:请哪个小组来介绍,小华家的客厅面积是怎样计算的?
(学生分别介绍不同的计算方法,见下图)。
3、归纳提高。
师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的?
生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。
师:为什么要补上一块呢?
生:补一块就成基本图形了。
师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去补充的部分的面积。
(四)巩固训练,一题多解。
师:这是学校教学楼占地的面积,你能用几种方法解决这个问题?(出示下图)。
师:请先在练习纸上画出解题的思路,然后进行计算。
(学生画图分析,并计算。具体计算过程略)。
(五)小结:这节课你有什么收获?
五、教学反思。
在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,在发展了学生空间观念的同时,找出隐含的条件,是学生能够利用已有的知识解决问题。
1、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法,学的主动积极、生动灵活。通过一题多解的训练,培养发散思维,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法。
2、运用现代化的教学手段,向学生提供直观、多彩,、生动的形象,使学生多种感官同时受到刺激,激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象概括,主动参与知识的形成过程。
3、问题来源于学生,回归于学生。学生在拼图的过程中,放手让他们拼图,测量各个要素,解决提出的问题。让学生在活动中,亲自体验自己的成功,在初步形成对组合图形概念的基础上,对“组合”的意义有了更深一层的理解,获得更多的成功的愉悦。
想法很奇特,是预料之外的。虽然是因为数据的偶然性,但这种方法用起来比较简便,予以鼓励。
新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。
最优圆形的面积教学设计(模板18篇)篇十
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。
2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。
我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
(一)观察动画,复习旧知,引出新知。
1、观察动画,分析引入。
(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)。
师:观察这幅图画,你发现了什么?
生:很多的基本图形,组成了很多的图形)。
师:这些由基本图形组合而成的图形,就叫做组合图形。
师:还记得我们都学过哪些基本图形吗?
(随着学生回答,按学习的顺序贴各个基本图形)。
问:那谁还记得这些基本图形的面积公式?
(随着学生回答,在各个基本图形后面写公式)。
(二)动手拼图,初探方法。
1、自拼图形,分析要素。
师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。
请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。
边做边思考:
师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?
(学生活动,教师巡视,指导画高。)。
2、展示图形,分析条件。
(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)。
师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。
(强调公共边:既做长方形的长,又作三角形的底。)。
3、打开思路,探索面积。
生:分另计算三角形与长方形的面积,然后相加。
师:谁能说一说具体的计算过程?
最优圆形的面积教学设计(模板18篇)篇十一
今天我说课的内容是:
一、说教材。
1、说教材的地位和作用。
《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
2、说教学目标、重点、难点。
根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:
知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。
过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。
情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。
教学重点:理解并掌握梯形面积计算公式,正确计算梯形的面积。
教学难点:梯形面积计算方法的推导过程。
二、说学生。
由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。
三、说教学策略。
根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:
1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、采用“小组活动,合作探究的教学方法”。
在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。
3、采用直观教学法。
在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。
通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。
四、说教学实施过程。
第一环节:创设情境,导入新课。
上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。
第二环节:动手操作,探究新知。
新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。
第三环节:合作探究,发散验证。
在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。
这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到既突出“重点”,又化解“难点”的目的。
第四环节:应用公式,解决问题。
数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:
第一题:是判断题,加深学生对推导公式的印象。
第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。
第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。
第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。
第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。
练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。
第五环节:课堂回顾,总结收获。
成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。
最优圆形的面积教学设计(模板18篇)篇十二
教学目标:
1、经历探索长方形和正方形面积公式的过程,掌握长方形、正方形面积计算的方法,能够解决相关的实际问题。
2、以单位面积为参照,估计长方形和正方形的面积,提高估测能力。
3、在实践操作、讨论交流等活动中,积累活动经验,初步养成独立思考,勇于探索的习惯。
教学难点:理解长方形所含面积单位的个数等于长方形的长与宽的乘积。
教学准备:课件、1平方厘米的面积单位若干、长方形卡片、直尺。
教学过程:
课前谈话:我们刚刚学习了面积和面积单位,你都知道了些什么?
一、复习导入。
概括起来我们知道了两件事:什么是面积和面积单位;知道用面积单位铺满的方法可以知道物体表面或封闭图形的面积。这节课我们继续来学习有关面积的知识(板书课题:长方形的面积)。
二、动手操作、自主探究。
(一)提供材料,启发研究这张方形卡片的面积是多少?
(1)估一估。考考你的眼力,估一估这张长方形卡片的面积大约是多少?
(2)怎样才能准确知道卡片的面积到底有多大?
(3)就用你们刚才想到的方法看能不能求出它的面积?
(二)展示、交流方法。
1.交流。
(2)谁估计得比较接近?
(3)你用的什么测量方法?
2.展示交流“全铺”情况。
(1)沿长摆了几个?有这样的几行?一共是几个几?
(3)用1平方厘米的面积单位全部铺满,这是一种方法,谁和他的方法一样?
3.展示交流“半铺”情况:沿长一行,沿宽一列。
(1)探究方法:这是沿长摆几个,沿宽摆几个?铺满是多少个面积单位吗?
(3)课件演示:沿长沿宽一共是多少个。
(4)这种方法不用全摆满,通过想就知道全部铺满以后有多少面积单位了。
(1)用这个方法,比比谁能很快地求出这个长方形卡片的面积。
(2)面积是多少?(课件展示:沿长沿宽一共是多少个)。
(2)能想象出。
5.探究更简便的方法——间接测量方法。
(1)“半铺”的方法比较简单,但它是不是适用于任何一个长方形面积的计算呢?
(4)探究交流:为什么长20厘米就能摆20个1平方厘米的面积单位呢?
(5)为什么宽是4厘米,就能摆这样地行呢?怎么列式?
(2)计算长方形卡片面积。比比谁能很快地算出这张卡片的面积,面积是多少?怎么列式?(板书算式。)大家共同研究,有了这么了不起的发现!
(三)归纳公式。
(1)研究到现在,你知道量出长和宽后怎样求出长方形的面积吗?
(3)(指算式)看到长几厘米,就知道能摆几个面积单位,宽几厘米,就知道能摆这样的几行。
所以长的厘米数乘宽的厘米数等于所含的平方厘米数。
三、在解决实际问题中验证公式。
2.交流反馈:选取教室里表面是长方形的物体,先估计它的面积,再量出它的长和宽,计算出面积,看看估的和算的是不是较接近。
3.练习:应用公式解决实际问题。
方法:总结求长方形面积的一般方法”的研究过程。今天我们研究出了求长方形的好方法,能解决许多的实际问题,其实利用这个方法,还可以求其他图形的面积,今后我们会继续学习。
四、课后反思:
最优圆形的面积教学设计(模板18篇)篇十三
教学目标:
1.引导学生自主探究发现长方形、正方形面积计算方法,经历面积计算方法的探究过程,能正确计算长方形、正方形的面积。
2.渗透“猜想-实验-发现-验证”的学习方法以及相关事物之间都是有内在联系的辩证唯物主义思想,培养学生的自主学习能力、合作意识和科学探究精神。
3.让学生通过对数学内在规律的探索,来感受数学的魅力,体验成功探究的乐趣。
教学重点:引导学生通过操作实践、观察比较,探究得出长、正方形的面积公式。
教学用具:1平方厘米的正方形、尺子、课件等。
教学设想:
围绕长方形面积公式推导这个重点问题,我力图把教学的着力点放在公式是怎样被提出来的,又是怎样加以推导论证的。
1、复习中设置障碍,引出问题。激发学生内在的学习动机,引发学生对数学。
学习的兴趣乃是求知的前提。在长方形面积计算公式推导中,让学生初步感知长方形的面积与长、宽之间存在的关系,再通过启发谈话,激发学生的学习动机和求知欲,为推导公式作铺垫。
2、在动手操作中,解决问题。学具操作可以帮助学生理解一些抽象的概念,
掌握一些数学规律,有利于教给学生探究知识的方法,让学生在操作中沿着具体--表象--抽象的过程发现问题,把握问题,寻找解决问题的方法。长方形面积公式推导中让学生利用1平方厘米的正方形纸片拼成一个长方形,在操作思维基础上,进一步感知长方形面积与它的长和宽的关系。
3、在思考、讨论、分析、验证中,得到结论。在操作交流之后,让学生对面。
积与长宽进行观察、比较、思考,组织学生围绕长方形面积和长宽之间有什么关系进行讨论,归纳分析问题,从而引导概括推导出长方形的面积计算公式。
4、在变化中,推导出正方形面积公式。充分利用长方形面积计算公式,正方形是特殊的`长方形,懂得了长方形的面积计算方法,正方形的面积计算方法也就迎刃而解。顺理成章地得出正方形面积公式。这样使学生了解了一般与特殊的关系,又形象地沟通了正、长方形之间的联系。
5、在练习中,发展学生思维,促进技能形成。本节课练习题的设计,力求紧。
扣重点,层次清楚,题型多样,并体现面向全班学生,因材施教的要求。长方形、正方形面积公式得出后,均安排一组专项练习题,旨在及时巩固所学会公式,获取足够的反馈信息,以便教师及时调理教学节奏。综合练习题,有一定的灵活性,旨在强化应用两个面积计算公式,形成计算技能。最后提高练习是为学有余力的学生设计的,意在因材施教,发展智能。
教学过程:
一、复习导入,提出问题。
1.提问:上节课,同学们认识了面积和面积单位。什么叫做面积?常用的面积单位有哪些呢?(课件出示面积概念和常用的面积单位)。
(小结方法)。
3.提问:要想知道黑板、教室面积有多大,你们怎么测量呢?(生:用1平方米的面积单位去测量。)要想游泳池、菜地、森林、操场、知道中国土地的面积有多大,你们怎么测量呢?使学生悟出:用面积单位一个一个去摆、去测量的方法太麻烦,也不实际。
4.教师在学生产生疑问的同时,再提出问题,引导学生去探索。
用面积单位去量的方法太不现实了,那么有没有一种简便的计算方法可以求出长方形和正方形的面积呢?这节课,就来研究长方形和正方形面积的计算。
二、解决问题。
(一)、猜想,长方形的面积与什么有关?与长和宽有怎样的关系呢?
(二)、学生操作发现规律。
1、分组活动,出示活动要求。
(1)组长主持活动,活动中互相配合,控制音量。
(2)用小正方形摆成不同的长方形(个数可以不同),并照表做好记录。
2、活动反馈。
操作完毕,反馈活动情况。结合反馈结果师板书黑板上的表格:
3、抽象概括:
(三)、验证与拓展。
1、验证:是不是所有的长方形面积都可以用长×宽来计算?出示简单的图形面积计算。让学生快速说出答案。
师:这是什么图形?正方形的面积可以怎样计算呢?学生解答。
反馈:对呀!正方形本身就是特殊的长方形嘛!只是长和宽相等的长方形,我们习惯上把正方形的长和宽叫边长,所以正方形的面积=边长×边长(板书)。
三、巩固应用。
1、计算78页“做一做”
3、告诉茶几面积,猜长和宽(出示课件)。
4、已知正方形的边长,对折一次后是什么图形,面积是多少?(备用)。
四、课堂小结:收获是什么?还想知道什么问题?
最优圆形的面积教学设计(模板18篇)篇十四
1、例1第二种算法教学失败。
教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。
再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。
2、作业的格式教学失败。
教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。
其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。
困惑:当把图形变形后的列式该如何评价?
最优圆形的面积教学设计(模板18篇)篇十五
人教版小学数学五年级上册第五单元《组合图形面积》。
1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。
1、重点:掌握组合图形面积的计算方法。
2、难点:理解计算组合图形面积的多种方法。
3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。
一、复习回顾,揭示课题
1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?
2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
3、组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)
二、自主探索组合图形面积
1、出示计算客厅面积问题:
小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?
2、请学生们观察这个图形,然后自己先想一想该怎么计算?
3、小组合作交流,讨论解决组合图形面积计算问题。
学生可能出现“分割法”和“添补法”
“分割法”即将上述图形分割成几个基本图形。
4、讨论“分割法”
1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。
2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。
5、讨论“添补法”
1)为什么要补上一块?
2)补上一块后计算的方法是怎样的?
(让学生都理解这一算法)
6、先归纳出两大类的方法“合并求和”、“去空求差”。
小结:谁来总结一下,组合图形的面积应该怎么计算?
计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。
看来同学们学得都很不错,现在老师还有几道题想考考大家。
三、实际应用
1、先来一题热身题,出示书本试一试。
2、一展身手,挑战开始。
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
可以采取学生独立解决与合作交流的形式
如果你不会做,可以和你的同桌讨论交流一下。
3、挑战本领
可以采取学生独立解决与合作交流的形式
4、求图形阴影部分的面积。
5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)
可以先四人小组讨论,然后在进行计算。
四、课堂总结
在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。
最优圆形的面积教学设计(模板18篇)篇十六
作为一名人民教师,就难以避免地要准备教学设计,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写呢?下面是小编为大家收集的《梯形的面积》教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。
1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。
一、课前复习。
(这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)。
(在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)。
二、探索转化:
1、引导学生提出解决问题方向:
(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。)。
2、动手转化:。
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)。
小组活动一:
(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。
全班汇报。
学生可能出现的情况:。
(新课程标准的基本理念就是要让学生人人学有价值的数学,强调教学要从学生已有的经验出发,让学生亲身经历知识的学习过程。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)。
3、公式推导:
同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。
小组活动二:
小组交流一下,把你们组的发现或结论写下来。
全班交流自己的发现或结论。
梯形面积=(上底+下底)x高2为什么要除以2呢?
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让学生自主探究、自主学习的教学理念,满足了学生希望自己是一个发现者、研究者、探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出重点,又化解难点的目的。)。
同学们,如用a表示梯形上底,b表示下底,h表示高,s表示面积,谁能用字母表示出梯形的面积公式?指名说,老师板书。
其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。
(鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)。
三、应用公式解决问题。
1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!
出示例3主题图。
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,
同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。
订正时,让学生评价,重在理顺学生的解题思路。
(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力,学以致用,来解决生活的实际问题。)。
2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生试做,二生板书。集体评价。
(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)。
四、练习检测:
1、填空:
两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于(),拼成的平行四边形的高等于()、梯形的面积等于拼成的平行四边形面积的()。梯形的面积等于()。
(理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)。
2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。
(1)两个面积相等的梯形可以拼成一个平行四边形。()。
(2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。()。
(3)梯形的面积等于平行四边形面积的一半。()。
(4)两个梯形面积相等,但形状不一定相同。()。
五、反思总结,拓展延伸。
1、学生谈收获,谈学习方法。
2、组内互评:这节课你最想表扬谁,为什么?
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
最优圆形的面积教学设计(模板18篇)篇十七
《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的'基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。由于所有学生已经有了推导三角形面积公式的经验,因此在推导梯形面积计算公式时,我想放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,()学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。
我想还是得结合本班学生的实际,合理安排,及时调整课堂设计,多考虑学生的思维特点,这样效果肯定会更好。
将本文的word文档下载到电脑,方便收藏和打印。
最优圆形的面积教学设计(模板18篇)篇十八
《义务教育课程标准实验教科书 数学》(北师大版)五年级上册。
《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。
1.复习。
(1)回答。
谁能说说我们已经认识了哪些平面图形?怎样计算它们的面积?
指名回答后,教师用字母公式表示长方形、正方形、三角形、平行四边形、梯形的面积公式。
(2)如图所示,计算下面图形的面积。
课件出示图形。
学生独立计算后,教师组织学生进行全班核对;全班核对时,教师让学生说说计算上面这些图形的面积时要注意什么。
2.引入。
师:请同学们拿出课前准备的纸片,请用这些图形拼一个复杂的图形并说一说像什么。
学生拿出课前准备的图形,进行拼图的操作活动。学生拼出后,教师抽选部分学生展示自己拼出的图形。
学生回答。
指名回答,通过交流,引导学生认识:虽然拼出的图形的形状不同但都是由几个简单图形拼出来的。
教师指出:像这样由几个简单图形拼出来的图形,我们把它们叫做组合图形。
师:你能算出自己拼出的组合图形的面积吗?(生回答:先把每个图形的面积算出来,再相加就行了。)
师:这节课,我们就来学习组合图形面积的计算。
板书课题:组合图形的面积。
1.出示例题。
小华家新买了住房,计划在客厅铺地板(客厅平面图如下)。请你估计他家至少要买多大面积的地板,再实际算一算,并与同学进行交流。
2.自主探索算法。
先让学生估计小华家至少要买多大面积的地板(指名回答),接着教师提出“怎样算出准确的得数”这个问题。
接着让学生在独立思考的基础上再小组内交流算法。老师巡视,及时了解学生典型的算法。
师:请同学们小组合作,帮小华计算出这个图形的面积,看那些组的方法又多又巧。(学生合作讨论计算,教师巡视。)
3.全班交流算法。
师:哪个组能给大家介绍你们的方法,并说说为什么这样做?
(学生展示分割方法和计算过程,陈述思考的过程,教师用电脑课件演示并板书。)
师:大家采用的.方法有什么共同的特点呀?
师:为什么要进行分割?
师:大家采用的就是人们计算组合图形面积常用的一类方法,叫作分割法。(板书:分割法)
师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢?
学生回答。
师:这样能计算组合图形的面积吗?
学生回答。
师:我们班的同学真是太棒了!这就是计算组合图形面积的另一类方法,叫作添补法。(板书:添补法)。
师:我们可以利用分割法和添补法计算组合图形的面积。简称割补法。(板书:割补法)。
(1)先指导学生理解题意,让学生明确“这张纸板还剩下多大的面积?”指的是哪些部分的面积。
(2)再让学生独立计算,在此基础上教师组织学生交流算法。
(1)先指导学生理解题意,让学生明确解题的关键是:应先算这面墙的面积(即:应先算出题中组合图形的面积),再根据乘法的意义算出一共要用多少千克涂料。
(2)让学生独立解决问题,并与同桌交流算法,再此基础上教师组织学生进行全班交流。
3.学校要油漆60扇教室的门的外面(门的形状如图,单位:米)
(1)需要油漆的面积一共是多少?
(2)如果油漆每平方米需要花费5元,那么学校共要花费多少元?
师:你们肯定比我行,让学生独立计算。(师故意示弱造势)
师:谁可以把自己的想法告诉大家?学生说出解题思路。
师:这节课你有什么收获?(生回答)
师:大家真了不起,经过积极思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。