最优一元一次方程概念教案(汇总24篇)

时间:2025-05-13 作者:雁落霞

教学工作计划的编制需要充分利用教材和教辅资料,灵活运用各种教学资源。教学工作计划的制定是一项令人充满挑战的任务,以下范文为大家提供了一些参考。

最优一元一次方程概念教案(汇总24篇)篇一

1、学生通过旅游、选灯、用电、水费、用气、电信等问题的方案设计,弄清各类问题中的等量关系,掌握用方程来解决一些生活中的实际问题的技巧.

2、通过一个开放式的空间,放手让学生去探索,去发现,培养学生分析问题和用方程去解决实际问题的能力.

3、让学生在生动活泼的问题情境中感受数学的应用价值,产生对数学的兴趣,养成认真倾听他人发言的习惯,感受与同伴交流的乐趣。

把生活中的实际问题抽象出数学问题。

引导学生弄清题意,设计出各类问题的最佳方案。

(师生活动)设计理念。

提出问题问题:小江一家三口准备国庆节外出旅游.现有两家。

由学生完成选择旅行社的方案。从学生比较感兴趣的实际生活问题,引入新课,并由学生自己设计出选择旅行社的方案,为新授哪种灯省钱埋下伏笔。

分析问题出示教科书94页探究2:用哪种灯省钱?

师生共同探讨完成下列问题:

1、上述问题中基本等量关系有哪些?

(费用=灯的售价+电费,电费=0.5×灯的功率(千。

瓦)×照明时间(时)。

2、列式表示两种灯的费用各为多少?

(节能灯用t小时的费用(元)为:60+0.5×0-o.11t。

白炽灯用t小时的费用(元)为:3十0.06×0.5t)。

3、当照明时间t取何值时,(1)白炽灯比节能灯省钱,

(2)节能灯比白炽灯省钱?(3)白炽灯与节能灯费用一样?(精确到1小时)。

4、如果计划照明3500小时,则需要购买两个灯,试设计你认为能省钱的选灯方案。

以课本例题中实际生活问题为素材,使学生感受数学来源于生活,激发学生学数学的兴趣,师生共同参与合作完成问题中的探讨的几个问题,体现了以学生为主体,教师作为问题解决的组织者,引导者,合作者的新课程教育理念。

探索创新下面问题是学生课前调查到的与人们生活密切相关的实际问题,每一大组完成一个,分四个小组讨论后设计出最佳方案。

10分钟后,大组派代表交流发言.

1、电价问题。

据我们调查,我市居民生活用电价格为每天早晨7时到晚上23时每度0.47元,每天23时到第二天7时每度0.25元.请根据你家每月用电情况,设计出用电的最佳方案.

2、水费问题。

我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.50元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元.

问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)。

(2)根据你家用水情况,设计出最佳用水方案.

3、用气问题。

某市按下列规定收取每月的煤气费:用煤气如果不超过60立方米,按每立方米o.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.怎样用气最节约?请设计出方案来.

4、电信支费。

随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.

(1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元.超过3分钟以后,每分钟付1元.

根据上述资料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?(2)某人估计一个月内通话300分钟,应选择哪种移动通讯或用长途电话合算些?提供给学生一个开放的空间,放手让学生去探索、去发挥,通过学生合作交流来设计最佳方案,培养学生用数学的意识和创新意识。

课堂小结可用教师对各小组交流的方案进行简单的评价作为小结。

布置作业1、必做题:课本第98页习题2.4第5、7题。

2、选做题:

分层次布置作业。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

本课以生活中的实际问题引入,以学生为主体,师生共同合作参与完成例中设计的。

几个问题,教师在学生接受新知识的过程中,起到了一个组织者、合作者、引导者的角色.学生的学习始终是主动的.通过学生课前的社会调查,对生活中的一些方案以开放形式设计问题,学生通过小组合作交流,设计出不同的方案,让学生在生动活泼的交流情境中感受到数学的应用价值,产生对数学的兴趣.同时养成认真倾听他人发言的习惯,感受与同伴交流想法的乐趣.通过用电、用水最佳方案的设计,培养学生节约用电、用水的意识.

最优一元一次方程概念教案(汇总24篇)篇二

2、理解方程的解的概念,会判断一个数值是否是已知方程的解。

环节一自主学习——对于疑惑的问题尽量小组互助解决。

课前至少阅读课本两遍,完成例题与习题,熟知本节课学习目标与重点难点。

环节二生生互动——课堂5分钟练习并与小组成员相互交流心得。

a。b。c。d。

2、方程的概念:含有的等式叫做方程。

a。b。c。d。

4、一元一次方程的概念:只含有个未知数,并且未知数的次数都是,这样的整式方程叫做一元一次方程。

5、根据下面所给的条件,能列出方程的是()。

a与的'差的b甲数的2倍与乙数的的和。

c一个数的是6d与的差的。

6、由第5题可知,问题中必须含有才能列出方程,这正是列方程的关键!

a。b。c。d。

8、解方程与方程的解的概念:解方程就是求出使方程中等号的值,而这个值就是。

环节三师生互动——你惑我释,合作交流,知识提升。

最优一元一次方程概念教案(汇总24篇)篇三

3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。

教学重点。

2、能验证一个数是否是一个方程的解。

教学难点。

寻找问题中的等量关系,列出方程。

教学过程。

一、情景诱导。

如果设大象的体重为xt,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。

要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。

二、自学指导。

学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。

附:自学提纲:

1、什么是方程?请举出1—2个例子。未知数通常用什么表示?

3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?

4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?

三、展示归纳。

1、请有问题的同学逐个回答自学提纲中的问题,生说师写;

2、发动学生进行评价、补充、完善;

3、教师根据展示情况进行必要的讲解和强调。

四、变式练习。

1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。

附:变式练习。

2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程:。

3、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是。

4、设某数为x,根据题意列出方程,不必求解:

(1)某数比它的2倍小3;

(2)某数与5的差比它的2倍少11;

(3)把某数增加它的10%后恰为80.

6、若x=1是方程kx-1=0的解,则k=.

五、课堂小结。

通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?

六、布置作业。

课本83页习题3.1第1题。

最优一元一次方程概念教案(汇总24篇)篇四

2.掌握等式的性质,理解掌握移项法则。

3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的.实际问题。

难点重点:

解方程、用方程解决实际问题。

难点:用方程解决实际问题。

教学流程。

二、典例回顾。

(1).x=5(2).x2+3x=2(3).2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解.

(1).x=3(2)x=3。

4.解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时.

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系.

三、基础训练:课本第113页第1.2.3题.

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

五、课堂小结:收获了哪些?还有哪些需要再学习?

最优一元一次方程概念教案(汇总24篇)篇五

(二).过程与方法。

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用.

(三).情感态度与价值观。

开展探究性学习,发展学习能力.

二、重、难点与关键。

(一).重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程.

(三).关键:抓住实际问题中的数量关系建立方程模型.

三、教学过程。

(一)、复习提问。

1.叙述等式的两条性质.

2.解方程:4(x-)=2.

解法1:根据等式性质2,两边同除以4,得:

x-=。

两边都加,得x=.

解法2:利用乘法分配律,去掉括号,得:

4x-=2。

两边同加,得4x=。

两边同除以4,得x=.

(二)、新授。

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题.

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台.

题目中的相等关系为:三年共购买计算机140台,即。

前年购买量+去年购买量+今年购买量=140。

列方程:x+2x+4x=140。

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x.

根据分配律,x+2x+4x=(1+2+4)x=7x.

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0.

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140。

合并。

7x=140。

系数化为1。

x=20。

由上可知,前年这个学校购买了20台计算机.

上面解方程中合并起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60.

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60。

合并,得10x=60。

系数化为1,得x=6。

所以2x=12,3x=18,5x=30。

答:甲组12人,乙组18人,丙组30人.

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60.

(三)、巩固练习。

1.课本第89页练习.

(1)x=3.

(2)可以先合并,也可以先把方程两边同乘以2.

具体解法如下:

解法1:合并,得(+)x=7。

即2x=7。

系数化为1,得x=。

解法2:两边同乘以2,得x+3x=14。

合并,得4x=14。

系数化为1,得x=。

(3)合并,得-2.5x=10。

系数化为1,得x=-4。

2.补充练习.

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)。

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个.

列方程3x+2x=32。

合并,得8x=32。

系数化为1,得x=4。

黑色皮块为43=12(个),白色皮块有54=20(个).

(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x-1)页.

本问题的相等关系是:第一天读的`量+第二天读的量+还剩23页=全书页数.

列方程:x+2+x-1+23=x.

四、课堂小结。

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和.这是一个基本的相等关系.

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.

五、作业布置。

1.课本第93页习题3.2第1、3(1)、(2)、4、5题.

2.选用课时作业设计.

合并同类项习题课(第2课时)。

1.(1)3x+3-2x=7;(2)x+x=3;。

(3)5x-2-7x=8;(4)y-3-5y=;。

(5)-=5;(6)0.6x-x-3=0.

二、解答题.

3.甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米.

(1)两车同时出发,相向而行,出发多少小时两车相遇?

4.甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离.

答案:。

二、2.705人,设育红小学1995年学生人数为x人,列方程320=x-150.

3.(1)4小时,设出发后x小时相遇,列方程60x+48x=460.

(2)3小时,设b车开出后x小时两车相遇,列方程60+60x+48x=460.

4.3千米,设a、b两地间的距离为x千米,-=.

5.1分钟,设经过x分钟两人首次相遇,列方程550x-250x=400.

最优一元一次方程概念教案(汇总24篇)篇六

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想.

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

2、最简方程的解法;

正确地解最简方程。

引导发现法。

1.什么叫等式?等式具有哪些性质?

2.什么叫方程?方程的解?解方程?

(1)只含有一个未知数;

(2)未知数的次数都是一次。

想一想:

(2)怎样求最简方程(其中是未知数)的解?

1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:

3、课堂小结:

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

最优一元一次方程概念教案(汇总24篇)篇七

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。

(4)求出所列方程的解;。

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

最优一元一次方程概念教案(汇总24篇)篇八

3.使学生初步养成正确思考问题的良好习惯.。

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.。

例1某数的3倍减2等于某数与4的和,求某数.。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.。

答:某数为3.。

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.。

解之,得x=3.。

答:某数为3.。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原先有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.。

答:原先有50000千克面粉.。

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿.。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.。

其苹果数为3×5+9=24.。

答:第一小组有5名同学,共摘苹果24个.。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.。

(设第一小组共摘了x个苹果,则依题意,得)。

三、课堂练习。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.。

四、师生共同小结。

首先,让学生回答如下问题:

1.本节课学习了哪些资料?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答状况,教师总结如下:

(2)以上步骤同学应在理解的基础上记忆.。

五、作业。

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

最优一元一次方程概念教案(汇总24篇)篇九

教学目标:

2、知道“元”和“次”的含义;

能力目标:

1、培养学生准确运算的能力;

2、培养学生观察、分析和概括的能力;

3、通过解方程的教学,了解化归的数学思想.。

德育目标:

1、渗透由特殊到一般的辩证唯物主义思想;

2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;

3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;

重点:

2、最简方程的解法;

难点:正确地解最简方程。

教学方法:引导发现法。

教学过程。

一、旧知识的复习:

1.什么叫等式?等式具有哪些性质?

2.什么叫方程?方程的解?解方程?

二、新知识的教学:

(1)只含有一个未知数;

(2)未知数的次数都是一次。

想一想:

(2)怎样求最简方程(其中是未知数)的解?

三、巩固练习。

1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。

2、检测:

3、课堂小结:

四、本节学习的主要内容。

2、最简方程(其中是未知数);

3、解最简方程的主要思路和解题的关键步骤及依据。

五、课堂作业。

最优一元一次方程概念教案(汇总24篇)篇十

(1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

2、教学目标(认知、能力、情感)。

(1)知识目标。

能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

(2)能力目标。

进一步培养学生分析问题,解决实际问题的能力。

(3)情感目标。

通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

3、教学重点:

引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

4、教学难点。

掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

5、教法学法。

优选教法。

指导学法。

学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我反思”的过程中学习。

二、教学环节。

我把本节课设计为5个环节:

1、情境引入相遇问题,初步感知列表方法。

通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题――相遇问题。

引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。

本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的`知识获取过程,真正体现了学生是数学学习的主人。

2、感悟故事中的追及问题,拓展提高对列表的认识。

以同学们熟悉的故事为背景,配以形象生动的动画,引入路程问题――追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。

教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。

3、回归现实,梳理新知。

本环节让学生应用所学知识解决现实生活中的问题。

本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。

4、合作互动,深化提高。

编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。

本环节让学生以小组为单位编写题目。

前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作和团队意识。

5、畅谈收获,内化提高。

这节课体验到了什么?

让学生本节学习收获和感受,全体同学交流。

对学生数学学习的既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。

设计亮点。

(1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。

(2)让学生经历实践―c认识――再实践――再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。

最优一元一次方程概念教案(汇总24篇)篇十一

2.掌握等式的性质,理解掌握移项法则。

3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

难点重点:

解方程、用方程解决实际问题。

难点:用方程解决实际问题。

教学流程。

二、典例回顾。

(1).x=5(2).x2+3x=2(3).2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解.

(1).x=3(2)x=3。

4.解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时.

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系.

三、基础训练:课本第113页第1.2.3题.

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

六、课堂小结:收获了哪些?还有哪些需要再学习?

最优一元一次方程概念教案(汇总24篇)篇十二

2.掌握等式的性质,理解掌握移项法则。

3.会用等式的性质解一元一次昂成(数字系数),掌握解一元一次方程的基本方法。

5.初步学会用方程的思想思考问题和解决问题的一些基本方法,学会用数学的方法观察、分析、归纳和总结现实情境中的实际问题。

重点。

难点重点:解方程、用方程解决实际问题。

难点:用方程解决实际问题。

教学流程。

师生活动时间复备标注。

二、典例回顾。

(1).x=5(2).x2+3x=2(3).2x+3y=5。

判断下列x值是否为方程3x-5=6x+4的解.

(1).x=3(2)x=3。

4.解决问题的基本步骤。

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括号,得4x+8x+16=40。

移项及合并,得12x=24。

系数化为1,得x=2。

答:应先安排2名工人工作4小时.

注意:工作量=人均效率人数时间。

本题的关键是要人均效率与人数和时间之间的数量关系.

三、基础训练:课本第113页第1.2.3题.

四、综合训练:课本113页至114页4.5.6.7.8。

五、达标训练:3.7。

五、课堂小结:收获了哪些?还有哪些需要再学习?

学生作业。

课件出示问题明确知识要点。

学生练习基础上,教师点拨。

最优一元一次方程概念教案(汇总24篇)篇十三

本节课的教学设计中坚持以学生发展为本。通过丰富的情境,活跃的讨论,将教材中提供的几个与生活密切相关的实际问题,抽象出相等的数量关系,建立数学模型。启发学生逐层深入,多方位、多角度地思考问题,加强知识的综合运用,尊重个体差异,帮助学生在自主探索与合作交流的过程中获得数学活动经验,提高灵活解决实际问题的能力。

教学内容分析。

本节课是人民教育出版社的义务教育课程标准实验教科书《数学》七年级上第二章第四节。列一元一次方程解决生产生活中的一些实际问题,是初中阶段应用数学知识解决实际问题的开端,同时也是今后学习列其它方程或方程组解决实际问题的基础。

教学对象分析。

学生在小学学习时就已接触过有关实际问题中的盈亏问题和省钱问题,掌握了盈亏问题和省钱问题的基本关系,并会解决一些简单问题,同时,在本章前阶段的学习中学习了一元一次方程的解法及列一元一次方程解实际问题建模的思想,但由于学生的认知起点和学习能力存在差异,部分学生对于抽象数学模型可能感到困难,因此,教学时要注意学生的学习倾向,挖掘积极因素,力求不同的学生获得不同的发展。

知识与技能目标。

进一步掌握生活中实际问题的方程解法,能找出实际问题中已知数、未知数和全部的等量关系,列一元一次方程加以解决。

过程与方法目标。

主动参与数学活动,通过问题的`对比体会数学建模思想,形成良好的思维习惯。

情感、态度和价值观目标。

经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,品尝成功的喜悦,激发应用数学的热情。

教学重点:1.体验用多种方法解决实际问题的过程。

教学难点:体会实际问题的生活情节,将数量关系抽象概括成为方程模型。

教学关键:调动全体学生的积极性,让学生参与实践,在实践中提问、交流、合作、探索,正确地列出方程,解决问题。

利用多媒体课件引入问题,让学生在实际背景下发现和理解数学问题。

问题1:销售中的盈亏:

分析:两件衣服共卖了120(=60x2)元,是盈是亏要看这家商店买进这两件衣服时花了多少钱,如果进价大于售价就亏损,反之就盈利。

小组讨论:

问题2:用那种灯省钱。

分析:问题中有基本的等量关系。

费用=灯的售价+电费。

最优一元一次方程概念教案(汇总24篇)篇十四

去括号,移项,合并同类项,系数化为1。

4、巩固练习。

(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)。

(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)。

5、小结:和同学们一起回顾我们这节课学习了什么?

最优一元一次方程概念教案(汇总24篇)篇十五

(1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

2、教学目标(认知、能力、情感)。

(1)知识目标。

能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

(2)能力目标。

进一步培养学生分析问题,解决实际问题的能力。

(3)情感目标。

通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

3、教学重点:

引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

4、教学难点。

掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

5、教法学法。

优选教法。

本节课主要采用“学生主体性学习”的教学模式。通过多媒体创设情境,激发学生兴趣,问题让学生想,设计问题让学生做,方法技巧让学生归纳。教师的作用在于组织、引导、点拨,促进学生主动探索,积极思考,归纳,充分发挥学生的主体作用,让学生真正成为课堂的主人.

指导学法。

学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我反思”的过程中学习。

我把本节课设计为5个环节:

1、情境引入相遇问题,初步感知列表方法。

通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题——相遇问题。

引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。

本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的知识获取过程,真正体现了学生是数学学习的主人。

2、感悟故事中的追及问题,拓展提高对列表的认识。

以同学们熟悉的故事为背景,配以形象生动的动画,引入路程问题——追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。

教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。

3、回归现实,梳理新知。

本环节让学生应用所学知识解决现实生活中的问题。

本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。

4、合作互动,深化提高。

编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。

本环节让学生以小组为单位编写题目。

前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作和团队意识。

5、畅谈收获,内化提高。

这节课体验到了什么?

让学生本节学习收获和感受,全体同学交流。

对学生数学学习的既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。

(1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。

(2)让学生经历实践—–认识——再实践——再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。

最优一元一次方程概念教案(汇总24篇)篇十六

4.理解解方程的目标,体会解法中蕴涵的化归思想.

探索1。

等式一边的项可以移到等式的另一边吗?

如果把"3"变号后移到的另一边呢?

换一个等式-6-7=-13试一试.

任写一个等式再试一试.

探索2。

(1)方程x+3=-1的解是多少?

探索3。

怎样求方程x-7=5的解?

有的学生可能还是乐意用算术解法,教师要有足够的耐心.

甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差.所以有x=5+7(理由是_______________________),于是x=12.

乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.

丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.

议一议,三种解法,你乐意用哪一种?

归纳。

解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项.

注意:移项的要点不在移动,而在于变号.

想一想:移项为什么要变号?移项的根据是什么?

探索4。

以下各方程的“移项”对不对?为什么?

(1)x+5=7,移项得x=7+5;。

(2)3-x=7,移项得-x=7-3;。

(3)2x=7x,移项得2x+7x=0;。

(4)2x=7x-6,移项得2x-7x=-6.

探索5。

(1)3x+6=0,移项得0=-3x-6;。

(2)3x=5x-7,移项得3x+7=5x;。

(3)3-x=5x,移项得3-x-5x=0;。

(4)3x+20=7x-18,移项得-7x+18=-3x-20.

例题学习。

p81.例1。

练习。

p81.练习。

作业。

p84.习题2,3,9。

补充作业。

1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的两位数比原两位数大36.求原两位数.

解:设原两位数十位上的数为x,。

那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,。

则原两位数记为___________.

因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.

根据新两位数比原两位数大36,列方程:_____________________.

解这个方程得__________.答:______________________________.

最优一元一次方程概念教案(汇总24篇)篇十七

教学目标:

1.知识目标。

(1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

2.能力目标。

(1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;。

(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

3.情感目标:

(2)培养学生严谨的思维品质;。

(3)通过学生间的互相交流、沟通,培养他们的协作意识。

教学重点:1.弄清列方程解应用题的思想方法;。

教学难点:1.括号前面是“-”号,去括号时,应如何处理,括号前面是“-”号的,去括号时,括号内的各项要改变符号。

2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

教学过程:

一、创设情境,提出问题。

问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

学生思考,根据自己对一元一次方程的理解程度自由编题。

问题2:解方程5(x-2)=8。

解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

(教学说明:给学生充分的交流空间,在学习过程中体会“取长补短”的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)。

二、探索新知。

1.情境解决。

问题1:设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

问题2:教师引导学生寻找相等关系,列出方程。

根据全年用电15万度,列方程,得6x+6(x-2000)=150000.

问题3:怎样使这个方程向x=a的形式转化呢?

6x+6(x-2000)=150000。

去括号。

6x+6x-12000=150000。

移项。

6x+6x=150000+12000。

合并同类项。

12x=162000。

系数化为1。

x=13500。

问题4:本题还有其他列方程的方法吗?

用其他方法列出的方程应怎样解?

设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解题)。

归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号。)。

去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号。

例题:解方程3x-7(x-1)=3-2(x+3)。

解:去括号,得3x-7x+7=3-2x-6。

移项,得3x-7x+2x=3-6-7。

合并同类项,得-2x=-10。

系数化为1,得x=5。

三、课堂练习。

1.课本97页练习。

四、总结反思。

1.本节课你学习了什么?

2.通过今天的学习,你想进一步探究的问题是什么?

(由学生自主归纳,最后老师总结)。

四、作业布置。

1.课本102页习题3.3第1、4题。

2.配套资料相关练习。

最优一元一次方程概念教案(汇总24篇)篇十八

学习目标:

1、进一步经历运用方程解决实际问题的过程。

2、提高学生找等量关系列方程的能力。

3、培养学生的抽象、概括、分析和解决问题的能力。

4、学会用数学的眼光去看待、分析现实生活中的情景。

重点:

1、如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。

2、解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。

难点:

如何从实际问题中寻找等量关系建立方程。

学习指导:

一、知识准备。

1、通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。

2、谈一谈:

请举例说明打折、利润、利润率、提价及削价的含义分别是什么?

3、算一算:

(1)原价100元的商品,打8折后价格为元;

(2)原价100元的商品,提价40%后的价格为元;

(3)进价100元的商品,以150元卖出,利润是元。

二、学习新课。

一)思考:

1、把下面的“折扣”数改写成百分数。九折八八折七五折。

2、你是怎样理解某种商品打“八折”出售的?

二)问题:

1、说说“打折销售”中自己有过的亲身经历。

2、假设你是一个商店老板,你的追求是什么?

3、你是怎样理解商品的利润?

三)新知探讨。

1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?

2、结合实际,说说你从打折销售中可以获得哪些数学问题?

(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?

(2)一种画册原价每本16元,现在按每本11。2元出售。这种画册按原价打了几折?

如果设每件服装的成本价为x元,根据题意,

(1)每件服装的标价为:()。

(2)每件服装的实际售价为:()。

(3)每件服装的利润为:()。

(4)列出方程,并解答:

四)回顾与反思。

最优一元一次方程概念教案(汇总24篇)篇十九

知识与能力:

1、通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步、

过程与方法:

1、能结合实际问题情境发现并提出数学问题、

情感态度与价值观目标:

1、勤于思考,乐于探究,敢于发表自己的观点;。

2、以积极的态度与同伴合作,从解决实际问题中体验数学价值、

重点。

难点。

将实际问题转化为数学问题,通过列方程解决问题、

最优一元一次方程概念教案(汇总24篇)篇二十

1、经历由实际问题抽象为方程模型的过程,进一步体会模型化的思想。

2、通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题,解决问题的能力。

(师生活动)设计理念。

创设情境提出问题。

信息社会,人们沟通交流方式多样化,移动电话已很普及,选择经济实惠的收费方式很有理实意义。

出示教科书80页的例2;观察下列两种移动电话计费方式表:

全球通神州行。

月租费50元/月0。

本地通话费0.40元/分0.60元/分。

1、你能从中表中获得哪些信息,试用自己的话说说。

2、猜一猜,使用哪一种计费方式合算?

3、一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?

4、对于某个本地通通话时间,会出现两种计费方式的收费一样的情况吗?本例是一道与生活相关的移动电话收费的问题,让学生讨论选择经济实惠的收费方式很有现实意义。

理解问题是本身是列方程的基础,本例是通过表格形式给出已知数据的,通过设计问题1、2、3让学生展开讨论,帮助理解,培养学生的读题能力和收集信息的能力。

解决问题学生充分交流讨论、整理归纳。

解:1、用全球通每月收月租费50元,此外根据累计通话时间按0.40元/分加收通话费;用神州行不收月租费,根据累计通话时间按0.60元/分收通话费。

2、不一定,具体由当月累计通话时间决定。

3、全球通神州行。

200分130元120元。

300分170元180元。

0.6t=50+0.4t。

移项得0.6t-0.4t=50。

合并,得0.2t=50。

系数化为1,得t=250。

以表格的形式呈现数据,简单明了,易于比较。

通过探究实际问题与一元一次方程的关系,提高分析问题,解决问题的能力。

学生练习,教师巡视,指导,讨论解是否合理。

知识梳理小组讨论,试用框图概括用一元一次方程分析和解决实际问题的基本过程。

学生思考、讨论、整理。

实际问题题。

列方程。

实际问题的答案。

数学问题的解。

这是第一次比较完整地用框图反映实际问题与一元一次方程的关系。

让学生结合自己的解题过程概括整理,帮助理解,培养模型化的思想和应用数学于现实生活的意识。

小结与作业。

布置作业。

1、必做题:教科书82页习题2.2第2题。

2、一个两位数,个位数字是十位数字的3倍,如果把个位数字与十位数字对调,那么得到的新数比原数大54,求原来的两位数。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的快乐更容易激起学生对数学的兴趣,在本节中,引导学生从身边的移动电话收费,旅游费用等问题展开探究,使学生在现实、富有挑战性的问题情境中经历多角度认识问题,多种策略思考问题,尝试解释答案的合性的活动,培养探索精神和创新意识。

在前面几节学习中,已经对利用一元一次方程解决问题的基本过程进行多次渗透,逐步细化,本节要求学生用框图概括,使学生对应用一元一次方程解决实际问题有较理性的认识,进一步体会模型化的思想。

最优一元一次方程概念教案(汇总24篇)篇二十一

3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。

教师应指出:

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。

(4)求出所列方程的解;。

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

最优一元一次方程概念教案(汇总24篇)篇二十二

1.通过对典型实际问题的分析,体验从算术方法到代数方法是一种进步.

2.在根据问题寻找相等关系、根据相等关系列出方程的过程中,培养获取信息、分析问题、处理问题的能力.

3.在方程的概念“含有未知数的等式”指引下经历把实际问题抽象为数学方程的.过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.

1.能结合实际问题情境发现并提出数学问题.

2.通过学习进一步体会方程是刻画现实世界的有效数学模型,增强从实际问题出发建立数学模型的能力.

情感态度与价值观目标。

1.勤于思考,乐于探究,敢于发表自己的观点;。

2.以积极的态度与同伴合作,从解决实际问题中体验数学价值.

教学重难点。

重点。

难点。

将实际问题转化为数学问题,通过列方程解决问题.

最优一元一次方程概念教案(汇总24篇)篇二十三

(一)教材的地位和作用。

(二)教材的重难点。

二、教学目标分析。

(一)知识技能目标。

1.目标内容。

(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。

2.目标分析。

(二)过程目标。

1.目标内容。

在活动中感受方程思想在数学中的作用,进一步增强应用意识.。

2.目标分析。

(三)情感目标。

1.目标内容。

2.目标分析。

三、教材处理与教法分析。

最优一元一次方程概念教案(汇总24篇)篇二十四

(二)过程与方法。

通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。

(三)情感态度与价值观。

开展探究性学习,发展学习能力。

(一)重点:会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。

(三)关键:抓住实际问题中的数量关系建立方程模型。

(一)、复习提问。

1、叙述等式的两条性质。

2、解方程:4(x—)=2。

解法1:根据等式性质2,两边同除以4,得:

x—=。

两边都加,得x=。

解法2:利用乘法分配律,去掉括号,得:

4x—=2。

两边同加,得4x=。

两边同除以4,得x=。

(二)、新授。

公元825年左右,中亚细亚数学家阿尔、花拉子米写了一本代数书,重点论述怎样解方程。这本书的拉丁文译本取名为《对消与还原》。对消与还原是什么意思呢?让我们先讨论下面内容,然后再回答这个问题。

分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买2x台,又知今年购买数量是去年的2倍,则今年购买了22x(即4x)台。

题目中的相等关系为:三年共购买计算机140台,即。

前年购买量+去年购买量+今年购买量=140。

列方程:x+2x+4x=140。

如何解这个方程呢?

2x表示2x,4x表示4x,x表示1x。

根据分配律,x+2x+4x=(1+2+4)x=7x。

这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0。

下面的框图表示了解这个方程的具体过程:

x+2x+4x=140。

合并。

7x=140。

系数化为1。

x=20。

由上可知,前年这个学校购买了20台计算机。

上面解方程中合并起了化简作用,把含有未知数的`项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数。

例:某班学生共60分,外出参加种树活动,根据任何的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数。

分析:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占2份,乙组人数占3份,丙组人数占5份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人。

问:本题中相等关系是什么?

答:甲组人数+乙组人数+丙组人数=60。

解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:

2x+3x+5x=60。

合并,得10x=60。

系数化为1,得x=6。

所以2x=12,3x=18,5x=30。

答:甲组12人,乙组18人,丙组30人。

请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,且这三组人数之和是否等于60。

(三)、巩固练习。

1、课本第89页练习。

(1)x=3、

(2)可以先合并,也可以先把方程两边同乘以2、

具体解法如下:

解法1:合并,得(+)x=7。

即2x=7。

系数化为1,得x=。

解法2:两边同乘以2,得x+3x=14。

合并,得4x=14。

系数化为1,得x=。

(3)合并,得—2、5x=10。

系数化为1,得x=—4。

2、补充练习。

(2)某学生读一本书,第一天读了全书的多2页,第二天读了全书的少1页,还剩23页没读,问全书共有多少页?(设未知数,列方程,不求解)。

解:(1)设每份为x个,则黑色皮块有3x个,白色皮块有5x个。

列方程3x+2x=32。

合并,得8x=32。

系数化为1,得x=4。

黑色皮块为43=12(个),白色皮块有54=20(个)。

(2)设全书共有x页,那么第一天读了(x+2)页,第二天读了(x—1)页。

本问题的相等关系是:第一天读的量+第二天读的量+还剩23页=全书页数。

列方程:x+2+x—1+23=x。

四、课堂小结。

初学用代数方法解应用题,感到不习惯,但一定要克服困难,掌握这种方法,掌握列一元一次方程解决实际问题的一般步骤,其中找等量关系是关键也是难点,本节课的两个问题的相等关系都是:总量=各部分量的和。这是一个基本的相等关系。

合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或—x的系数分别是1,—1,而不是0。

五、作业布置。

1、课本第93页习题3、2第1、3(1)、(2)、4、5题。

2、选用课时作业设计。

合并同类项习题课(第2课时)。

1、(1)3x+3—2x=7;(2)x+x=3;

(3)5x—2—7x=8;(4)y—3—5y=;

(5)—=5;(6)0。6x—x—3=0。

二、解答题。

3、甲、乙两地相距460千米,a、b两车分别从甲、乙两地开出,a车每小时行驶60千米,b车每小时行驶48千米。

(1)两车同时出发,相向而行,出发多少小时两车相遇?

4、甲、乙二人从a地去b地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达b地,求a、b两地之间的距离。

答案:

二、2、705人,设育红小学1995年学生人数为x人,列方程320=x—150。

3、(1)4小时,设出发后x小时相遇,列方程60x+48x=460。

(2)3小时,设b车开出后x小时两车相遇,列方程60+60x+48x=460。

4、3千米,设a、b两地间的距离为x千米,—=。

5、1分钟,设经过x分钟两人首次相遇,列方程550x—250x=400。

猜你喜欢 网友关注 本周热点 精品推荐
心得体会是对自己在某个领域或某段时间内的体验与感悟进行总结和归纳,它能够帮助我们更好地认识自己和提高自己的能力,我想分享一下我的心得体会。心得体会是在实践中得来
心得体会是我们积累经验和教训的一种方式,能够帮助我们更好地规划和决策。在这里,小编为大家集结了一些精彩的心得体会范文,希望能够给大家带来一些写作上的灵感和启示。
每个人都应该掌握一定的自我介绍技巧,它可以在各种场合中充分展现我们的个人魅力和实力。接下来是一些自我介绍中常用的表达和句型,希望能够提高大家的自我介绍水平。
在一个正式的场合中,主持词是展示主持人形象和能力的机会,因此需要大家在准备时慎重考虑。以下是小编为大家整理的一些主持词范文,希望能为大家的活动增添一些亮点和气氛
教案的制定应结合幼儿园的具体情况和教学目标,确保教学内容符合幼儿园课程标准。以下是一些经验丰富的幼儿园教师分享的教案范例,欢迎大家学习借鉴。小班幼儿刚进幼儿园,
心得体会是对自己在某一特定经历或事件中的感受和领悟的总结。小编为大家整理了一些优秀的心得体会样文,希望能够给大家写作提供一些思路和启发。第一段:引言(介绍道德模
用一分钟的时间,细心观察周围的美好,会发现生活的美好。下面是一些关于如何利用一分钟的经验和技巧,供大家参考。她知道,以后即便还有思念,也不会再有眷恋了;我的一生
心得体会是我们在学习和工作中汲取经验教训的重要方式。小编为大家准备了一些专业领域的心得体会范文,希望能给大家带来一些灵感和启发。当今社会发展迅速,教育也朝着越来
读后感是读者对书中情节、人物和主题思想的感悟和回味。通过下面的一些读后感范文,我们可以看到不同读者对作品的理解角度与感悟,这也为我们提供了思考的启示。
优秀作文能够给读者带来美的享受和心灵的震撼,让人产生共鸣和思索。小编为大家整理了一些优秀作文的范文,希望大家能够从中获得一些写作的灵感和技巧。当炎热的夏天来临时
合同协议是法律和社会规范的必要产物,保障了交易的正当性和可靠性。请您查阅以下范文,以更好地理解合同协议的写作方式和注意事项。甲方:(卖方)乙方:(买方)。根据甲
爱岗敬业的员工总是以自己为中心,以工作为乐,积极主动地承担起自己的职责。爱岗敬业范文:某工厂的生产员工精益求精,不断改进工艺,提高产品质量。我认为,爱岗敬业就是
施工过程中需要及时与监理单位和设计人员进行沟通和协调,解决施工中的技术问题。4.以下是小编为大家整理的施工注意事项,希望能引起大家对施工质量和安全的重视。
通过写心得体会,我们可以认识到自己的优点和潜力,同时也可以发现自己的不足之处,从而更好地提高自己。在这里为大家整理了一些精选的心得体会范文,供大家参考和分享,希
一个好的事迹材料应该包括事情的起因、经过和结果,以及所取得的经验和教训。以下是一些普通人的事迹材料,虽然可能不那么耀眼,但却充满了真实与温暖。吐鲁洪肉孜曾是昆仑
工作汇报是对一段时间内的工作成果进行总结和概括的一种书面材料,它能够帮助我们了解自己的工作进展情况。接下来,让我们一起来看看一些优秀的工作汇报范文,希望能够对大
毕业论文是学生学术成果的集中展示,它不仅是研究生学习过程中的重要组成部分,更是对个人才能的全面考核。以下是一些优秀毕业论文的案例,可以帮助大家更好地理解和把握论
通过参考范文范本,我们可以更好地了解作文评分标准,提高自己文章的得分。接下来是一些经典范文范本,希望对大家的写作有所帮助。摘要:众所周知,高校女生的篮球课不好上
通过阅读范文范本,我们可以了解到不同作者在相同主题下的不同表达方式,从而开拓我们的思维和创作能力。以下是小编为大家准备的范文范本,供大家参考,并从中学习和吸取写
通过教案模板的使用,教师可以更好地评估和调整教学过程,提高教学效果。以下是小编为大家整理的教案模板范文,供大家参考学习。《平方差公式》是一节公式定理课,是各位老
教学工作总结可以提高师生双方对教学内容和要求的理解和认同。以下是小编为大家收集的教学工作总结范文,供大家参考。希望通过这些范文的阅读,可以给大家提供一些写作思路
工作鉴定是对员工在工作中的实际表现进行评估和总结的过程,有助于发现亮点和提出改进建议。以下是小编为大家精选的工作鉴定范文,希望能给大家提供一些写作灵感。
作文是对自己思想和语言能力的一次考验,写出一篇优秀的作文需要进行充分的准备和思考。借助以下优秀作文范文,我们可以更好地理解并掌握写作的要领。透过柔软的雨丝烟春纱
在撰写计划书之前,我们需要对目标进行明确,并确定实现这些目标所需要的步骤和资源。下面是一份实用的计划书范文,通过具体的案例描述了计划书的重要性和编写方法。
通过写心得体会,我们可以更加深入地思考自己的学习方法、工作技巧和人生态度。下面这些心得体会范文是经过精心挑选的,希望能为大家写作提供一些思路和方法。
通过教学工作计划,教师可以合理安排教学活动的时间和形式,提高学生对知识的掌握和运用能力。教学工作计划范文中包含了教学目标、教学内容、教学方法、评价方案等多个方面
更多申请书是为了获取学校、奖学金、工作职位等机会而提交的一种书面材料,它可以展示个人的优势和能力,帮助申请者脱颖而出。我想我们需要准备一份优秀的申请书了吧。小编
合同协议是当事双方就特定事项达成的一种法律约束力的文件,用于明确双方的权利和义务。范文中的合同协议涵盖了各种不同类型的商业合作,可以帮助您快速起草合同文本。
党员心得体会是在党组织的指导和培养下,对实践中所遇问题的思考和总结。以下是小编为大家整理的一些党员同志的心得体会,希望对大家有所启发和帮助。作为党员,参加北京冬
工会工作总结是对工会在一定时间内所开展的各项任务、活动以及成果进行总结和概括的一种书面材料,它是工会组织自我评估和改进的重要工具,也是促使工会成员思考和反思的途
心得体会是一个自我反思的过程,能够帮助我们提升自我认知和自我管理的能力。往后面翻,小编为大家找到了一些别具一格的心得体会范文,或许可以给你一些创作的灵感。
优秀作文通过摒弃繁杂的修辞和千篇一律的套词,以独特的个性表达出作者自身的风采。以下是小编为大家搜集的一些优秀作文范文,希望能够给大家提供一些写作的参考。
通过转正工作总结,我们可以发现工作中的问题和挑战,并提出解决方案,为公司提供更好的贡献。在转正工作总结范文中,我们可以借鉴其他同事的经验和写作技巧。
优秀作文要注重细节的描写和展示,通过具体的描写和细腻的语言,使文章更加生动形象。这些优秀作文范文不仅在内容上值得称赞,还在语言上展示了高超的写作技巧和丰富的词汇
心得体会是个人成长的关键一环,它可以让我们更好地应对人生中的挑战和困扰。以下是小编为大家收集的心得体会范文,仅供参考,希望对大家在写作过程中有所启发。
在工作和学习中,我们常常需要总结自己的经验和收获,以便更好地改进和提升。这些心得体会的范文能够让我们更好地理解和把握写作的技巧和要点。。今年10月份以来,我进取
心得体会是我们在日常生活中积累的知识和智慧的结晶,需要我们认真总结和整理。希望以下这些心得体会范文能够给大家带来一些思考和启示,帮助大家写出更好的心得体会。
培训心得体会的写作可以提高我们的写作能力和表达能力,培养我们的思维深度和广度。在下面,小编为大家整理了几篇优秀的培训心得体会范文,希望对大家的写作有所启迪。
优秀作文是一种能够准确表达作者意图并优美流畅的文学作品,它给人以美的享受。为了给大家提供更多的写作素材和思路,小编为大家准备了一些优秀作文范文。由于病毒的到来,
培训心得体会可以帮助我们反思自身的学习态度和方法,并找到更有效的学习方式。小编为大家整理了一些培训心得体会样本,希望能够帮助大家更好地写作和总结。段落1:引言(
调查报告通常包括调研目的、调研方法、调研结果和结论等几个主要部分。调查报告范文中的实证数据和研究结果能够为我们提供科学的参考和依据。此次环境调查活动,采取无记名
通过写演讲稿,我们还可以提高自己的思维能力和言辞组织能力,培养逻辑思维和表达能力。以下的演讲稿范文是经过精心挑选和整理的,具有一定的代表性和实用性。
通过总结自己的心得体会,我们可以更好地传承和分享经验,帮助他人提高。在这里,小编为大家整理了一些关于写心得体会的经验和技巧,供大家参考和学习。近年来,电子产品的
在商业交易中,合同协议是不可或缺的一环,它规定了双方的约定事项。合同协议对于商业合作十分重要,以下是一些行业常见的合同协议范文,供您参考。本人/吾等乃贵公司证券
策划方案的编写应该以简洁、清晰、具体的方式呈现,方便相关人员理解和执行。以下是一些行业内优秀的策划方案实例,希望能给大家带来一些灵感。亲爱的同学们,斗转星移,岁
发言稿的撰写要考虑到听众的特点和需求,用简洁明了的语言让听众易于理解和接受。以下是小编为大家整理的一些优秀发言稿范文,供大家参考和借鉴。下面是小编为大家整理的,
心得体会是人们在学习、工作和生活中的一个重要环节,它可以帮助我们总结经验,提高自己的思考和反思能力。我想我们都应该写一篇心得体会来记录自己的成长和收获。小编为大
心得体会是对于所学知识的一种思考和总结,有助于加深自己对于学习内容的理解。小编为大家准备了一些精选心得体会范文,希望能够给大家提供一些启示和思路。第一段:介绍宿
心得体会是对自己在某个领域或某个时期所获得的见解和思考的总结。以下是一些经典的心得体会样本,您可以学习他们的写作方式和表达技巧。周末,我完成了作业,无所事事,东
写更多申请书需要我们全面了解申请事项的要求和标准,以及自身的优势和不足,寻找匹配的平衡点。小编为大家精心挑选了一些非常不错的更多申请书样本,供大家参考借鉴。
护士要具备耐心和细心的品质,能够细致入微地照顾患者的每一个细节。护士工作需要具备一定的技能和知识,我们整理了一些护理学习资料,供大家学习参考。_______先生
写心得体会可以帮助我们总结经验教训,避免犯同样的错误。以下是小编为大家收集的心得体会范文,仅供参考,希望能够对大家的写作有所启发。第一段:介绍冬奥会志愿者的重要
演讲稿是为了让听众更好地理解和接受演讲者的主题,通过结构化和逻辑化的语言表达,提高演讲效果。以下是一些关于社会问题和人文关怀的演讲稿,希望能够引发大家对社会公平
一个成功的策划方案应该有明确的目标和可执行的计划,同时也要考虑到未来的发展。以下是一些策划方案的案例分析和评价,希望对大家的项目实施有所启示。为了喜迎元旦佳节的
开学典礼是校园文化的一部分,每年都会有不同的主题和表现形式。小编为大家整理了一些优秀的开学典礼总结范文,希望能为大家提供一些写作的启示和参考。老师们,同学们:
述职报告的撰写需要准确描述工作情况和具体的成果,要避免夸大其词或虚假夸张。7.以下是一些经典的述职报告范文,供大家参考,希望对大家的写作能够有所帮助。
心得体会是对自己在某个领域或某个时期所获得的见解和思考的总结。以下是小编整理的一些精彩的心得体会范文,欢迎大家阅读借鉴。最近,廉洁文化进入校园,我校针对学生开展
心得体会是对于所学知识的一种思考和总结,有助于加深自己对于学习内容的理解。请大家认真阅读以下这些心得体会,或许能够给你一些新的触动和思考。自20__年起,每年5
合同协议是一种法律文件,用于明确双方当事人在某项交易或合作中的权利和义务。小编为大家精心挑选了一些合同协议的范本,希望能给大家提供一些启发和参考。甲方:(男方基
技术工作总结是对自己的学习和成长的一种回顾和总结,可以通过总结找到进步的方向和方法。小编整理了一些优秀的技术工作总结案例,希望能给大家提供一些启示和灵感。
在总结中,我们不仅可以看到自己的成长,也可以提醒自己在今后的学习和工作中要注意的问题。小编为大家搜索整理了一些总结范文的经典案例,希望能够给你的写作带来一些启迪
一个完善的月工作总结可以帮助我们更好地利用工作时间和资源,提高工作效率。接下来是几篇关于月工作总结的范文,希望能够给大家一些写作的灵感和启发。保持谦虚谨慎的作风
自我介绍不仅仅是简单地介绍姓名和职业,还应该加入个性、兴趣等关键信息,以展示我们的个性魅力。在自我介绍中,我们可以参考一些成功人士的经验,为自己的写作提供参考。
心得体会是对过去经验的总结和反思,它可以让我们更加从容地应对未来的挑战。以下是小编为大家整理的一些优秀心得体会范文,供大家参考和借鉴,希望能给大家提供一些启示和
运动会是校园里的一次盛会,同学们可以通过各种比赛项目展示自己的才华和能力。以下是小编为大家整理的运动会赛事统计数据,让我们一起了解比赛的成绩和进步。
我喜欢用心得体会来记录一些美好的瞬间和感动,让这些记忆成为我人生的宝贵财富。让我们一起来阅读一些优秀的心得体会文章,欣赏他人的思考和总结。我国是一个人均自然资源
范文是教师教学的重要教学资料,它可以帮助学生理解和掌握作文的要领。以下是小编为大家收集的范文范本,希望能给大家提供一些参考和借鉴的思路。在城市园林景观区域内通常
通过研读范文范本,我们可以学到很多写作技巧和表达方式。下面是小编为大家筛选的一些范文范本,希望能够给大家带来一些灵感和启发。(签章)身分证号码:________
德育工作计划旨在培养学生良好的品德、道德观念和行为习惯。小编为大家准备了一些德育工作计划的经典范文,欢迎大家一起学习和探讨。我们都知道,要教好书首先要育好人。做
工作计划表的制定可以使我们更加明确自己的目标,从而更好地激发自己的工作动力。以上是一些我为大家收集的工作计划表范文,希望对大家有所帮助。尊敬的业主、物业使用人:
通知的格式通常包括标题、正文、署名、日期和附件等要素。以下是小编为大家整理的通知范文,希望对大家在写作通知时能提供一些参考和灵感。我司自20xx年5月1日起至9
同一本书在不同人身上会产生出截然不同的读后感,我们可以通过写读后感的方式来发现自己与他人的差异。以下是小编为大家搜集的一些优秀读后感范文,希望能够为大家提供一些
这段时间以来,我在工作岗位上经历了不少挑战,取得了一些成绩,准备撰写一份述职报告,向领导和同事们展示出自己的努力和进步。请大家参考以下述职报告范文,以获取灵感和
随着社会的发展,更多申请书的重要性日益突出,它能够帮助我们在众多申请者中脱颖而出。希望大家通过阅读更多申请书范文,能够更好地应用到自己的写作中,取得更好的申请效
部门是组织中各个岗位的集合,每个部门都有自己的职责和权责,共同为组织目标而努力。希望大家能够通过阅读这些部门总结范文,提高自己的写作和表达能力。尊敬的王总:您好
二年级教案的编写可以帮助教师更好地组织教学活动,提高教学效果。以下是小编为大家整理的几篇优秀的二年级教案范文,供大家参考和借鉴。除法是本册教学的重点内容,它的含
发言稿的结尾要简洁有力,给人留下深刻印象,引发共鸣。如果你正在准备一个重要的演讲活动,那么这些范文一定会对你有所帮助。各位领导,同事们,大家好!想不到今天学校给
心得体会是我们在学习和工作中对所经历、所感受到的事物和经验的总结。下面是一些值得借鉴的心得体会范文,供大家参考和学习,希望能对大家写作有所启发。作为当代社会发展
在学校里,学生可以通过参加各种课外活动,锻炼自己的团队合作能力和领导才能。小编整理了一些学校总结的优秀范文,希望能够对大家有所启发和借鉴。一、明确各部门、各工作
总结经验教训,根据过去的工作经验和数据,制定更加科学合理的计划。下面给出了一些公认为优秀的计划书模板,供大家借鉴和参考,希望能对大家有所启发。互联网时代的诞生,
自我评价可以帮助我们建立自信心,认识到自己的价值和潜力。值得注意的是,以下的自我评价范文仅供参考,大家可以根据自己的情况进行修改和完善。20xx年夏天,我成为x
演讲稿是一个可以发表自己观点的机会,可以通过演讲来宣传自己的想法和理念。演讲稿范文的参考可以帮助我们更好地理解和应用演讲技巧,使我们的演讲更加生动有趣。
心得体会是个人在学习、工作或其他方面经历之后,对所获得经验和感受的总结和体悟。通过写心得体会可以帮助我们更好地认识自己,总结经验教训,提高自身的发展和进步。附上
心得体会不仅有助于我们巩固所学知识,还可以使我们更加成熟和成长。以下是小编为大家整理的心得体会范文,供大家参考和借鉴。能力作风建设是指在日常工作中注重培养和提高
心得体会是在一段时间内对个人经历、感悟和领悟进行总结和概括的一种文字记录。以下是一些精心整理的心得体会参考范文,希望能够对大家的写作有所帮助。三年级暑假即将结束
工作心得体会是我们不断探索和实践的结果,它能够为我们指引未来的工作方向。通过反思自己的工作心得体会,我发现自己在时间和计划管理方面还存在一些不足,因此我决定制定
优秀的作文不仅仅是语言表达准确,更需要思想深刻、观点独特。接下来将为大家呈现一些优秀作文的精品范例,供大家欣赏和学习。童年是一幅画,画里有我们五彩的生活;童年是
写心得体会可以帮助我们在以后的工作或学习中更好地运用所学所思。现在就让我们一起来欣赏这些精心挑选的心得体会范文,相信会给大家带来一些新的思考和体会。
在工作总结中,我们要客观、准确地评估自己在这个月的工作表现。为了更好地展示月工作总结的写作风格和内容,小编为大家整理了一些优秀的范文供参考。在这一年我的工作大概
合理的规章制度可以避免个人任性行为,保证统一的工作标准和质量要求。以下是一些规章制度的范例,作为参考:1.员工守时上下班制度;2.工作饭点休息制度;3.安全生产
租赁合同是租赁双方约定租赁期限、租金等重要条款的书面证明。接下来是一些租赁合同的典型范文,希望对大家起到参考作用。为了明确供用双方在燃气管理安装、燃气供应和使用
写心得体会可以帮助我们更好地理解自己的情感与思维过程。心得体会是在个人经历的基础上对所得到的思考与感悟进行总结和概括的文字材料。通过写心得体会,我们可以进一步加
总结是对过去经验的提炼和总结,可以为未来的工作和学习提供宝贵的经验教训。以下是小编为大家搜集的一些总结范文,希望能为大家提供一些参考和启示。2012年10月5日
工作心得的撰写过程是一个反思和自我提升的过程,有助于我们不断成长和进步。以下是一些工作心得的典型样本,希望能够帮助大家更好地理解和把握工作心得的写作要点。
申请书要体现出自己的特长与优势,塑造积极向上的形象。写更多申请书需要一定的经验和技巧,以下是一些写作要点和方法供大家参考,相信会对你有所帮助。区教育局房管所:我
申请书的目的是让对方对我们产生兴趣,并愿意给予我们机会。阅读这些申请书,了解他人的成功经验和突出之处,能够帮助您在撰写申请书时更有针对性地展示自己。
范文范本的话题和素材来源广泛,涵盖了科技、文化、社会、教育等各个领域。接下来,小编为大家介绍一些经典范文,希望能够引发大家对写作的思考和兴趣。敬爱的老师,亲爱的
心得体会是我们将所学所得化为文字的过程,通过写作,我们可以更好地反思和总结自己的成长历程。下面是一些写作心得体会的实例,希望可以给大家带来一些灵感。
通过写总结范文,我们可以对过去的经验进行总结和反思,为今后的发展提供有益的指导和借鉴。以下是小编为大家整理的一些优秀总结范文,希望能够启发和引导大家写作中的思路
心得体会是对自己思考和反思的结果,能够帮助我们更好地认识自己。这是一些来自各个领域的专业人士的心得体会,可以为我们提供更全面和多角度的思考。作为一名乳腺外科医生