范本是对一类物品或作品的典型代表,它可以帮助我们把握该类物品或作品的特点和要点。请大家注意,以下是一些范文范本,供大家参考借鉴,可以根据自己的需要进行适当修改。
数学广角鸽巢问题微课教学(热门16篇)篇一
1、借助直观学具演示,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解鸽巢问题。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决鸽巢问题的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“鸽巢问题”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。特别以游戏引入,又以游戏结束,既调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
数学广角鸽巢问题微课教学(热门16篇)篇二
一、教学内容:
人教版数学四年级上册教材第112页到第113页例1。
二、教学目标:
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究、动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
三、教学重、难点:
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼烙法。
四、教、学具准备:
圆形纸片若干、多媒体课件。
五、教学过程:
(一)谈话导入:
同学们,你们早餐吃了什么呀?老师小时候住在农村,没什么好东西吃,最盼望的是妈妈给我烙饼吃。见过烙饼的吗?大家知道烙饼是怎么烙出来的吗?(看视频)烙饼里面可有大学问哦,这个烙饼问题可是数学界中的名题之一哦,大家有兴趣去研究它吗?好,今天我们就一起来研究烙饼问题!(板书课题)。
(二)探究新知:
1、出示情境图,呈现问题。
(1)提问:你从画面上得到哪些数学信息?
(2)想想,如果只烙一张饼,需要多长时间?
(3)如果要烙两张饼,最快需要几分钟?
(4)学生说方案,对好的方法进行鼓励并命名。
(5)通过对比,初步培养学生寻找优化方案解决问题的意识。
2、探究三张饼的烙法。
(1)烙3张饼,至少需要多少时间?同座相互配合,用老师给你准备的三张小圆片烙一烙,想好后举手回答。
(2)学生分组动手操作。
(3)除了这些方法以外,那还有没有更好的方法呢?
(4)指名学生上台演示汇报。
(5)引导学生比较方法的异同优劣,并为最有优方法命名。进一步让学生感受到寻找优化方案解决问题的重要性。
(7)多媒体课件演示最佳方案,学生跟着老师一起再用最佳方案操作一遍。
3、讨论烙4―7张饼至少需要的时间。
(三)寻找规律:
1、初探规律,引起猜想质疑。
2、验证规律,总结规律。
4、强调:所以说,我们平时在解决问题时,一定要开动脑筋,寻找出最科学、最合理的解决问题的方法。
(四)解决问题:(课件展示)。
师:类似烙饼这样的问题,在生活中还有许多,我们走进生活再看一看。
(五)课后延伸:
一口大锅一次能烙10张饼,两面都要烙,每面需要3分钟。烙15张饼需要多少时间?
(六)课堂总结:
师:通过这节课的学习,你知道了什么?
我们做任何事情的时候都要开动脑筋,寻找最佳方案,合理安排时间,这样就能取到事半功倍的效果。我希望同学们都做一个勤于思考、珍惜时间的好孩子!
数学广角鸽巢问题微课教学(热门16篇)篇三
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼才能尽快吃上饼?”展开教学。设计了烙1张、2张、3张――――单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题――解决数学问题――发现数学规律――建构数学模型的过程,整节课渗透了以下理念:
1、放手让学生操作实践。
《课数课程标准》指出:学生的数学学习内容应当是现实的,有意义的,富有挑战性的。课中老师让学生明确要求以圆形纸片替代饼,与同桌进行烙饼活动。这一环节让学生参与到知识的生成过程中来,在操作中感知,在实践中升华。并要求学生用学具同桌模拟烙饼,一人烙饼,一人记录。
2、放口让学生畅所欲言。
上课时,老师让学生以小组为单位,进行交流、展示、再全班交流,这一环节实现了生生之间,师生之间的平等对话,它既是生生之间的互动也是师生之间的互动。通过相互交流取长补短,不断完善自己的认知体系,形成条理化,规律化的知识结构。在研究“烙3张饼需要多少时间”(这是本课的教学重点也是难点)时,大家都未曾用一个饼一个饼烙的方法,出现两个烙好后烙一个的方法比较多,个别组想到交替烙饼法。教师通过让学生动手演示、讲解,大家也基本理解,后面都知道充分利用“每次能烙两张饼”这个条件。
本人认为本堂课如果能再给孩子一个发展的课堂,在课的最后能安排“如果要烙的是4张饼,5张饼……n张饼呢?你发现了什么”。直接发现“饼数×3=时间”这一规律,得出其结果是:如果要烙的`饼的张数是双数,2张2张地烙就可以了,如果要烙的饼的张数是单数,可以先2张2张地烙,最后3张饼按上面的最优方法烙,这样做最节省时间”就更好。学生的发现其实更简单,更直观。数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。
数学广角鸽巢问题微课教学(热门16篇)篇四
排列与组合这一数学知识学生在二年级已经接触,三年级难度又有所提高。排列组合知识在生活生产中应用很广泛,由于其思维方法的新颖性与独特性,学习时要遵循“不重不漏”的原则,它又是培养学生思维能力的不可多得的好素材。本课教学后我进行了认真反思,觉得有以下可取之处和不足之处。
本节课选择的四个教学素材并不是随意组合的。而是经过精心考虑的,各自承载着不同的教育教学价值,各种数学思想分层次、分步骤地借助素材的探讨进行渗透。比如在服装搭配这一环节,重点是培养学生有序思考的数学思想,使学生明白怎样找出一种既不重复又不遗漏的搭配方法;在早餐搭配环节中重点是在有序思考的基础上让学生体验个性化、简洁化的表示方法,使学生明白各种不同的搭配可以用尽可能简单的方法表示出来,同时在素材的搭配种类上也有了拓展,发展了学生的思维。同样的道理,握手游戏的安排也不是比赛搭配的重复,而且进行了活动化、游戏化的设置,保持了学生浓厚的学习兴趣,通过学生对素材有步骤、有层次的探究,学生组合的思想、有序的思想、符号化思想得到了很好的培养与发展。
创设形象生动、亲近学生生活实际的教学情景,将有效地激发学生学习的.兴趣。本节课通过创设“衣服的穿法、早餐搭配、数字游戏”等与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题、注意让小组合作学习从形式走向实质。
“自主、探究、合作学习”是新课程改革特别提倡的学习方式,如何使合作学习具有实效性?本节课设计时,注意精选合作的时机与形式,在教学关键点、重难点时,适应地组织了同桌或四人小组的合作探究。在学生合作探究前,提出了明确的要求。在合作探究中,保证了合作学习的时间,并深入小组中恰当地给予指导。合作探究后,教师还能够及时、正确的评价。教师从实际的学习效果出发,考虑如何组织合作学习,有利于调动广大学生参与学习的全过程,防止合作学习走过场。
1、部分学生间出现的错误信息,没有充分展开,失去了很多的生成资源。
2、生活化素材如何上出数学味做的不够。
3、搭配问题的探讨还要将数学性与现实性结合起来考虑。
数学广角鸽巢问题微课教学(热门16篇)篇五
教学目标:
1、通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。
2、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3、通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:
经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。
教学难点:
理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
教具准备:
相关课件,相关学具(若干笔和筒)。
教学过程:
一、游戏激趣,初步体验。
二、操作探究,发现规律。
1、具体操作,感知规律。
教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?
(1)学生汇报结果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)师生交流摆放的结果。
(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。
(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)。
质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?
2、假设法,用“平均分”来演绎“鸽巢问题”。
1)思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?
学生思考——同桌交流——汇报。
2)汇报想法。
预设生1:我们发现如果每个筒里放1支笔,最多放3支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。
3)学生操作演示分法,明确这种分法其实就是“平均分”。
三、探究归纳,形成规律。
1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。
[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]。
根据学生回答板书:5÷2=2……1。
(学情预设:会有一些学生回答,至少数=商+余数,至少数=商+1)。
根据学生回答,师边板书:至少数=商+余数?
至少数=商+1?
2、师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
观察板书,同学们有什么发现吗?
得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。
板书:至少数=商+1。
师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
四、运用规律解决生活中的问题。
课件出示习题:
1、5个小朋友4把椅子,无论怎么坐总有一把椅子至少坐两个人,为什么?
2、从电影院中任意找来13个观众,至少有两个人属相相同。
……。
[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]。
五、课堂总结。
这节课我们学习了什么有趣的规律?请学生畅谈,师总结。
板书设计:
1、枚举法。
2、分解法:4(4、0、0),4(3、1、0),4(2、2、0),4(1、2、1)。
3、平均分:商+1。
数学广角鸽巢问题微课教学(热门16篇)篇六
我执教了《数学广角》一课。课后,我根据自己的一些体会感受与本低年组全体老师的宝贵意见和建议,现反思如下。
我所执教的是人教版三年级下册《数学广角》、搭配(二),本课的重点是让学生掌握简单的搭配方法,并培养学生有序、全面地思考问题和习惯。难点是培养学生有序、全面地思考问题的意识和习惯。本着从实践中来到实践中去的原则,让学生从生活实际中亲身感知有序搭配的思想,并使他们亲身体验搭配的产生过程,在体验的过程中解决生活中的数学问题。
简单的搭配问题是日常生活中应用比较广泛的数学知识,同时也是发展学生抽象能力和逻辑思维能力的好素材。我对教学内容的有效选择与创新的理解是这样的:用好教学内容,并对教学内容从多角度去做出理性的重建,把教学内容变为和学生生活实际相联系的,适合学生思考、探究,有利于培养学生创新意识、探究精神,促进学生发展的信息资源。
《课标》指出:“在解决问题的过程中,使学生能进行简单的。、有条理的思考。”为了培养学生良好的数学习惯,激发学生学习数学的热情,我在以下几个环节做了精心的安排:
亮点一:在情境中,学习新知的必要性让三年级的学生理解搭配,最好的方法就是利用学生熟悉的事物,创设一个情境,使他们在情境中有所感悟。因此我让小组合作交流、动手操作,课前我准备好数学用具,每一组两套用具。让学生参与活动并记录数据。然后引导学生思考:怎样不重复、不遗漏的找出搭配?从而引发学生思考。
亮点二:探究新知,提升学生的数学思维学生各抒己见,顺势引导学生探究新知。于是提出了:我们怎样才能有序的搭配?于是我设计了学生独立思考环节:让学生在明确目的之后,独立思考、大胆发言。思维发生了碰撞,由此得到正确的搭配方法。它既挖掘知识的内涵,体现数学知识的整体性、现实性和应用性,避免重复、遗漏,为学新知而学;又能拓展学生的思维,开阔学生的视野,使学生对搭配方法的认识体验,并从直观的实际中感知解决问题的方法。
不足一:未能充分让学生参与教学过程激发学生整理知识的心理需要,让学生自己整理,汇报比较,为学生提供充分的从事数学活动和交流的机会,有利于知识网络的建构。在提出怎样有序搭配时,这时我应该让学生展开讨论,从而促使全体学生真正地、主动地参与学习的全过程,让学生在自我评价中,学会自我肯定,自我反思。
切实提高自身业务素质,有效提高教学水平,是教师专业发展的最大阻碍,我自身认为自己在教学语言、教学经验以及教学机智方面还需要学习,今后我将会努力加强自身的业务素质,在有效提高教学水平的能力上在上一个台阶。
数学广角鸽巢问题微课教学(热门16篇)篇七
鸡兔同笼,是中国古代著名典型趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。接下来小编搜集了数学广角鸡兔同笼教学设计,欢迎查看,希望帮助到大家。
教学目标:
1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。
教学重点:
教学难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导。
学法:自主探究。
课前准备:多媒体。
教学过程:
一、定向导学:2分钟。
生:……(课件演示)。
师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。
2、学习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、自主探究:8分钟。
内容:课本p104例1的(1)。
时间:5分钟。
方法:边看书边完成下面要求:
1、“鸡兔同笼”这四个字是什么意思?
2、书上用了()种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?
生理解:
(1)鸡和兔共8只;
(2)鸡和兔共有26只脚;
(3)鸡有2只脚;
(4)兔有4只脚;
(5)兔比鸡多2只脚。(课件演示)。
师:那问题是什么?
生:鸡和兔各有多少只?
3、猜一猜:
师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?
4、介绍列表法:
师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)。
学生汇报整理后的表格,教师板书学生整理后的表格。(边板书,边理解填表过程)。
鸡
兔
脚
5、观察发现,列式计算。
三、合作交流:5分钟。
假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟。
五、小结检测:20分钟。
1、小结方法:
同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:
a、问答:
(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?
为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)。
(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)。
(注:如果前面出现了折半列表,就把这个环节提前讲。)。
b、解决问题。
(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
作业:p106;1、2、3。
板书:
假设全是鸡,就有脚8×2=16(只)。
比实际少26—16=10(只)。
一只鸡比一只兔少4—2=2(只)。
兔子:10÷2=5(只)。
鸡:8—5=3(只)。
数学广角鸽巢问题微课教学(热门16篇)篇八
通过复习练习,进一步掌握分数、百分数、小数的互化的方法。进一步掌握分数、小数等有关性质。
教学重点、难点:分数、百分数、小数的互化的方法。分数、小数等有关性质。
一、复习小数、分数、百分数、成数、折扣等互化。
表格出示:给出其中一种,要求转化成另外几种数。学生独立完成后,指名交流,说明转化方法。
0.351/4140%六成五八折。
二、分数、小数有关性质及其关系。
出示:12÷()=3/4=():36=()/12=()%。
学生独立填写。交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?
三、巩固练习。
1、第86页第12题。
独立完成,说明填写方法。
引导学生发现:第1小题:后面的数总比前面大,越来越接近1.
第2小题:后面的.数总比前面小,越来越接近0。
2、第86页第13、14题。
读题理解要求。再按要求完成。
四、补充练习。
填空题。
1.有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作(),读作(),它的计数单位是()。
2.六亿零六十万零六十写作(),改写成用“万”作单位是(),省略万后面的尾数是(),精确到亿位是()。
3.两个相邻的自然数,它们的差是()。一个自然数既不是质数又不是合数,与它相邻的两个自然数是()和()。
4.如果a+1=b,那么它们的最小公倍数是(),最大公因数是()。
5.把0.625的小数点向左移动两位是(),它缩小了()倍。
6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是()。
7.五个连续自然数的和是200,这五个自然数分别是()、()、()、()、()。
8.最大的一位纯小数比最大的两位纯小数小();最小的两位纯小数比最小的三位纯小数大()。
9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是()。
10.按从小到大的顺序排列下列各数:
0.3291.0241.60.70510.333……π0。
选择题。
1.最大的小数单位与最小的质数相差()。
a.1.1b.1.9c.0.9d.0.1。
2.一个自然数的最小倍数是18,这个数的约数有()个。
a.2b.4c.6d.8。
3.小数点向右移动两位,原来的数就()。
a.增加100倍b.减少100倍c.扩大100倍d.缩小100倍。
数学广角鸽巢问题微课教学(热门16篇)篇九
二、 教学目标。
1、 通过对生活中简单事例的分析研究,初步体会运筹思想在解决实际问题的应用,初步认识到解决问题策略的多样性,培养寻找解决问题的最优方案的意识。
2、 感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,培养合理安排时间的意识和习惯。
3、 能积极地参与数学学习活动,体会到学习数学的乐趣。
三、 教学准备:
多媒体课件;教师准备3个圆片代饼;每组3个圆片;
四、 教学过程。
(一)、谈话导入。
同学们,大家喜欢吃饼吗?你知道怎么烙饼才能最节约时间吗?今天我们研究烙饼问题。板书课题:烙饼问题。
(二)新课。
1、自主学习。
(1)出示本节课的学习目标,请同学们朗读。
(2)在预习的过程中,同学们阅读了教材主题图,说一说烙饼的前提是什么?
(3)请同学们汇报:烙一张饼和烙两张饼分别用来多长时间?
(4)在小组内交流:烙三张饼最短用多少时间?
(5)小组汇报:如何烙三张饼用时最短?
第一张第二张第三张所花时间。
第一次。
第二次。
第三次。
2、探究烙饼最佳方法。
(1)烙4张饼最快要 分钟,烙5张要 分钟,烙6张要 分钟,烙7张要 分钟,烙8张要 分钟,烙9张要 分钟,10张要 分钟。
(2)你发现了什么?
(3)学生思考、观察、发现、汇报。
烙的方法所花时间。
3张饼。
4张饼。
5张饼。
6张饼。
7张饼。
8张饼。
9张饼。
(三)过关检测。
出示三道小题,请同学们解决,说一说解决的方法。
(四)、小节。
师:这节课我们一块儿研究了烙饼问题,大家有什么收获?
小结:老师也希望大家能用我们今天所学的知识,合理的安排自己的时间,在以后的生活和学习中提高效率。
数学广角鸽巢问题微课教学(热门16篇)篇十
本册“数学广角”这一数学知识学生在二年级已经接触,三年级难度又有所提高,组合知识在生活生产中应用很广泛,由于其思维方法的新颖性与独特性,学习时要遵循“不重不漏”的原则,它又是培养学生思维能力的不可多得的好素材。
本节课的活动性和操作性比较强,并且在一系列的活动中渗透数学思想,围绕这一目标要求进行了实践,感觉基本上达成了本课的教学要求,同时也在教学实践中暴露出一些问题,下面结合本节课教学的情况进行反思。
1、创设生活情境,激发学习兴趣。
在教材中,这一部分内容是这样编排的:例2编排的是服装搭配,属于组合内容;在练习中安排了一些配合例题的巩固性练习。在备课时,我对例题的素材进行反复的思考,并且参考了许多相关的案例设计。经过多次更改,创设“游数学广角”的故事情境,穿衣服、吃早点、见面握手、为妈妈准备礼物一系列的情境。内容贴近学生生活实际,使学生体会数学的应用价值。学生乐意学,主动学,不仅获得了知识,更获得了积极的情感体验。
2、巧妙设计教学环节,渗透数学思想。
本节课选择的四个教学素材并不是随意组合的。而是经过精心考虑的,各自承载着不同的教育教学价值。比如在服装搭配这一环节,重点是培养学生有序思考的数学思想,使学生明白怎样找出一种既不重复又不遗漏的搭配方法。同时,在这一环节中我根据三年级学生的思维特点,在探索解决问题的方法时,要让学生借助学具,有用连线的方法、有用文字书写的方法,逐步抽象出有序的搭配方法,使学生的思维由具体过渡到抽象。本环节的引申部分,重点是在有序思考的基础上让学生体验个性化、简洁化的表示方法,使学生明白各种不同的搭配可以用尽可能简单的数字、字母、符号表示出来,同时在素材的搭配种类上也有了拓展,发展了学生的思维。增加了学生浓厚的学习兴趣。
3、尊重学生的主体地位。
在寻找搭配方法时,我给学生提供自主探究、合作交流的机会,让他们在探索活动中得出避免重复和遗漏的方法:按一定的顺序、逐一搭配,才能不重复、不遗漏,体验搭配的有序性。在经历探索的过程中,把学习的主动权交给了学生,使学生体验学习数学的乐趣。
本节课的不足之处在于:尽管在教学中我精心设计了一系列的数学活动,但部分学生在练习中还是出现了重复或遗漏现象。学生不能灵活运用本课所学内容,有些题型略加改变,学生便无从下手了,教师的教学语言不够精炼。
文档为doc格式。
数学广角鸽巢问题微课教学(热门16篇)篇十一
本节课是人教版小学三年级下册第八单元的内容,在教学这节课时,成功的地方:首先从学生的已有经验除法,用活教材,使内容生活化。《搭配》这节课着眼于学生的生活实际,使学生体会学习数学的意义,体现数学的应用价值。是小学数学三年级下册安排学习的知识。教材中的主要情境是“数字搭配和配衣服“,内容取材于生活,如衣服搭配、早晨的搭配等,寓教于乐,学生学的轻松有趣。
本节课的目的是让学生在学习的过程中,体验数学的价值,如早晨的搭配、衣服的搭配是学生身边经常接触的事情,通过这两个活动,不但巩固了所学的知识,而且联系学生生活实际,使学生体会到数学就在身边。其次在教学时,留给学生充足的探究空间,在本节课的教学中,我通过组织学生参与”摆一摆连一连、猜一猜“等活动,充分调动了学生的多种感官协调合作,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用整节课我利用去“趣味数学王国”这条线,把整节课串了起来,使学生在轻松愉快的活动中,理解搭配的思想方法,收到良好的教学效果。
在课中也有不足之处,那就是在数字的搭配环节,学生能够很好的理解“0”不能开头,也就是“0”不能放在数字的最左边,但当遇到实际问题时,比如练习二十三第一题说“唐僧的位置不变”一共有几种坐法?其实就是把唐僧的位置看着“0”不变,与例1相似,对于这类问题,多数学生不能很好理解。
数学广角鸽巢问题微课教学(热门16篇)篇十二
《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的引领的教学理念。具体说有一下特点:
1、在问题的解决过程中,注重图、算式、文字的有效结合。
本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合。既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。
2、在了解、尊重学生已有的知识经验的基础上来确定合理的'教学目标。
本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。
首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示。
其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的,学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。
总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!
文档为doc格式。
数学广角鸽巢问题微课教学(热门16篇)篇十三
排列与组合这一数学知识学生在二年级已经接触,三年级难度又有所提高。本课教学后我进行了认真反思,觉得有以下可取之处和不足之处。
一、充分渗透数学思想。
在早餐搭配环节中重点是在有序思考的基础上让学生体验个性化、简洁化的表示方法,使学生明白各种不同的搭配可以用尽可能简单的方法表示出来,同时在素材的搭配种类上也有了拓展,发展了学生的思维。同样的道理,握手游戏的安排也不是比赛搭配的重复,而且进行了活动化、游戏化的设置,保持了学生浓厚的学习兴趣。
二、创设情境,激发学生探究的兴趣。
本节课通过创设“衣服的穿法、早餐搭配、数字游戏”等与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题、注意让小组合作学习从形式走向实质。在教学关键点、重难点时,适应地组织了同桌的合作探究。在学生合作探究前,提出了明确的要求。并深入小组中恰当地给予指导。有利于调动广大学生参与学习的全过程,防止合作学习走过场。
本节课存在以下不足之处:生活化素材如何上出数学味做的不够。
数学广角鸽巢问题微课教学(热门16篇)篇十四
自准备汇报课以来,磨课的过程让我痛并快乐着,磨课很累,需要不断设想每一环节是否合理,言辞是否妥当,内容要有所突破和创新。但是与此同时也是快乐的,在这个过程中,我在思考、在钻研、也在进步着,倍感欣慰。师父给了我很多建议和意见,耐心地帮我修改教案,在师父的帮助下这次汇报课才顺利地完成。为了调动学生学习的积极性,让学生在轻松愉快的气氛中学习,我创设了“密码门”这个情境引入,唤醒学生已有的知识,引导学生用二个数字探索排列的规律,“找密码”有趣的数字排列,激发学生解决问题的探究欲望。自然过渡到引导学生用三个数字探索排列的规律。通过动手用数字卡片摆一摆,让学生感受有序思考的过程,借助数位表,根据学生的反馈,提炼出两种排列的方法:位置交换法和十位固定法。通过自主探究,让学生直观感受按顺序、有规律地排列,才能实现既不重复也不遗漏。最后为了巩固这节课的重点,又设计了3个问题:带有0的三个数字组成两位数、涂颜色、三人合照。整节课注重以生为本,调动学生参与的积极性,使更多的小朋友能够融入到学习的环节中,能够快乐地学习。
但是这节课也存在许多不足之处,我总结归纳有如下几点:
在学生自主探究的环节中,我一味寻找自己预设的学生反例,没有得到预期的结果,感觉有点混乱,反应出我课堂应变能力较差。
课堂处理、与学生沟通都不够顺畅,环节与环节衔接的过渡不够自然,这都是我在以后的教学中需要改进的地方。
每一次磨课都反应了自己存在许多教学问题,每一个环节设计都需要不断反复推敲,过渡衔接词显得尤为重要,不单单是设计好自己教学内容,还要预设学生的各种答案,以做好应对回答的准备,上好一堂课没有那么容易,将是一段长期学习的过程。
数学广角鸽巢问题微课教学(热门16篇)篇十五
通过简单最优化的问题向学生渗透优化思想,让学生体会运筹思想在实际解决问题中的作用,来感受数学的魅力。首先运用教材,促使学生积极参与教学活动。设计了先为客人沏茶再为客人吃烙饼的生活情境。当画面上呈现妈妈让小明帮着给李阿姨沏茶这一数学信息时,没有急于想去解决如何让李阿姨尽快喝上茶,而是让学生想想平时是怎么做的?特意激活学生已有经验,学生处于主动思考积极动脑的最佳状态,有效地促使学生积极参与学习活动。以一个个具体事例让学生观察、操作、讨论和交流等活动,使学生在解决具体问题中体会数学的方法及应用价值,学会优化思想。
从日常的沏茶的问题入手到探索烙饼的过程及最佳方法,再到解决现实生活中常见的问题,都是学生在思考、探索是学生在操作实验,使学生交流比较,始终处于主体地位。
数学广角鸽巢问题微课教学(热门16篇)篇十六
这节课上,我在教学设计上力图体现“尊重学生,注重学生”,使学生建立“做数学”的理念,使学生在轻松愉快的氛围中,培养学生学习数学的主动性、实效性。
1.以学生的活动为主线。为了调动学生学习的积极性,整个课堂气氛活跃,通过摆一摆,配一配、连一连、让学生在独立尝试解决的基础上进行小组讨论交流、汇报都兴致勃勃,参与热情很高。
2.注重层次性和思考性。活动设计符合学生的认知规律,由浅入深,由易到难,具有层次性。如“两两配”到“三二配”最后到“二四配”,由易到难,重视培养学生的思考能力,让学生在思考的基础上进行交流,使学生互相启发,共同提高。本节课我尽量设计些让学生体验数学的价值,这些教学内容很具有层次性和思考性。通过这几个活动,不但巩固了所学的知识,而且联系生活实际,使学生体会学习数学的意义,体现了数学的应用价值。
3.注重培养学生用数学眼光去观察问题和有序思考问题的能力。用数学眼光去观察问题是培养学生的一种数感、一种生活问题数学化的感悟。有序思考问题的能力培养则是检验学生思维的有序性。搭配要按一定的顺序,才能不重复、不遗漏。教学中力求做到问题的提出具体、明确、到位。有效的引导学生思维有具体逐步过渡到抽象。抓住学生的认知起点,为学生提供了充分探索与交流的空间,水到渠成的让学生掌握了搭配的规律并提升归纳了解决此类问题的策略。
当然,在教学过程中也存在一些问题:
1.问题的提出不够明确,是不是能够放手,让学生自己试着提下呢?
2.课堂的教学语言不够严谨,特别是有些过渡处理的较为生硬。
3.课堂教学的评价有待进一步改进。