范文范本是指为了供大家参考而编写的一系列写作材料,能够提供写作方向和范例。希望大家能够通过阅读这些范文范本,总结出自己的写作特点和风格,创作出更好的作品。
精选数学悖论的论文(案例19篇)篇一
文章从运用信息技术创设情境引导学生学习,运用信息技术化静为动激发学生学习,运用信息技术及时反馈提高教学效果这三方面阐述信息技术在小学数学教学中的应用。
信息技术;小学数学;教学。
随着现代教育技术的不断发展,多媒体辅助教学已经成为现代教学的一种有效手段。信息技术集声音、图像、动画于一体,能更好地吸引学生的注意力,提高学生学习数学的兴趣,帮助学生理解数学知识,将信息技术应用于数学课堂必定为数学课堂改革发挥重要的作用。
1.运用信息技术设情境,引导学生学习。
数学知识大多来源于生活。数学教学中,通过创设学生熟悉的生活情境,让学生联系生活实际学习数学知识。例如,在教学“求去掉多少的实际问题”时,可通过创设“猴妈妈摘桃,总共摘了28个桃,但是小猴嘴馋偷吃了一些,还剩下7个”这样一个情境,并出示情境图,让学生结合文字观察,并提问“你从图上可以知道什么”。学生在情境图中发现了已知条件,有些会根据已知条件提出减法计算问题,有些可能会提出“吃了多少个桃”这样的问题。在知道了哪些是已知的和哪些是要求的之后,再请学生说一说从图中知道了什么和要求的是什么(如图1所示)。这样一来,既帮助学生审清了题意,也激起了学生的求知欲望。再如,在执教新苏教版二年级下册第八单元“数据的收集与整理”时,通过创设童心园的情境,先让学生仔细观察情境图(如图2所示),然后提问:“图中有哪些人?他们在做什么?”紧接着让学生自由发言:“看了这幅情境图之后,还想知道什么?”从而引出学生提出的问题:把图中的人物进行分类。通过课始所提的两个问题,学生很容易就想到:可以按照老师和学生分类,也可以按照他们参加的活动分类,这样就为接下来的教学做好了铺垫。以上两个例子都是通过运用信息技术创设情境,引导学生自主学习,这样既培养了学生的观察能力,又培养了学生的自主学习能力。
2.运用信息技术化静为动,激发学生学习兴趣。
有的数学知识比较枯燥,教师就要运用信息技术把要解决的问题直观、形象地展示给学生,这样才能丰富学生的想象,激发学生的学习兴趣。技术辅助教学时,可以根据教材内容和教学需要,把动、静结合起来,通过生动有趣的画面,有效地激发学生学习新知识的兴趣。例如,在执教新苏教版二年级下册“认识时分”时,通过课件演示,先呈现出一个圆,接着将钟面平均分成12个大格,并标上1到12这12个数字,然后在每个大格里出示5个小格,最后再出示时针和分针,在逐步演示的过程中,激发学生的学习兴趣,并让学生知道钟面上有12个大格,每个大格里有5个小格,一共有60个小格,这为接下来的学习奠定了基础。在学生认识时针和分针,并能辨别整时之后,继续采用动画的形式,让时针和分针都从12开始运动,同时让学生观察时针和分针的运动情况,学生会发现,时针转一大格分针能转一圈,而时针转一大格时,分针转一圈是60分钟,引导学生发现1小时=60分钟。又如,在执教新苏教版二年级下册“角的初步认识”时,课始,通过一个生动有趣的动画激起学生的好奇心,让原本静态的点和线动起来,组合成以前学过的图形和今天即将要认识的图形,从而引出今天所要学习的内容。在探究角的大小和什么有关,与什么无关时,同样结合动画和实物演示,让学生深刻体会角的大小和角两边张口的大小有关,与两边的长短无关。在这两节课的教学过程中都是运用信息技术把原本静态的内容制成动态的效果,有效激发学生学习的兴趣,让原本枯燥的数学知识变得生动形象,达到了良好的教学效果。
3.运用信息技术,及时反馈,提高教学效果。
随着信息技术的发展,交互式电子白板的应用也越来越广泛。在平时的课堂教学中,如果能够充分利用好交互式电子白板,就能有效地提高学生的学习积极性。电子白板的最大优势在于它的现场生成性,可以及时反馈,有时在课件制作过程中,不需要有太多的预设,有些可以让学生通过电子感应笔现场生成,当堂反馈,这样有助于提高教学效果。比如,在完成新授内容之后,可以让不同的学生运用电子感应笔在白板上进行练习,其他学生则在自己的练习本或书本上练习,除了完成书本上相应的练习之外,还可以补充一些课外练习,增加练习强度,即时反馈,提高教学效果.
精选数学悖论的论文(案例19篇)篇二
俗话“重奖之下,必有勇夫”。现在的学生在家喜欢得到家人的表扬,在学校最喜欢得到老师的鼓励,尤其是小学生。因为他们最需要的是赐予热情的激励和体贴关心的语言,老师的每一句话,对他们来说都是有影响力的[1]。在课堂上,我们老师一边教课文一边要让学生把所学知识现场反馈回来,以及时知道学生对知识的掌握程度。在学习目标进行回归性检测环节尤其要突出“弱势群体”让他们说、谈、演、写,进一步检查落实情况,能否达到三维目标。有的时候也可以在课文讲解结束时立即对当堂对所学内容进行检测,当然训练题是我们语文教研组老师集体备课精选出来打印好的,题型不定,有选择、连线、填空和探究,内容不仅有基础知识,也有运用和拓展性的,如语文课《赵州桥》写的是我国一座古老的石拱桥,现存完好,有1300多年的历史,作业中就可以让学生简单介绍一下自己家附近的一座自己非常了解的石拱桥或者混凝钢筋桥。这样检测不仅让学生达到知识的强化,而且达到运用知识的目的。还可以进行当堂检测,当堂检测像考试一样,由学生独立完成,教师当堂批改,下课立即收交[2]。整个课堂像考试一样紧张,全力以赴,全神贯注,因而换来的是学习的高效。这个过程中还伴随着教师对学生的评价和学生间的相互评价。教师要特别关注那些“弱势群体”的点滴进步,要给予鼓励,增强他们的自信心,不让一个学生掉队,经常鼓励学生互相评价。
在语文教学中,关于学生的及时反馈,我们老师的评价显得尤为重要。成绩好的学生基本上都能回答正确,成绩中等尤其是成绩还比较差的学生的回答有的时候答案不完美甚至不正确的时候我们要都鼓励,不能批评,这类学生能够回答问题其实就已经很不错了,至少他们还在思考,有积极的参与问答意识,如果老师批评回答错误的学生,那么学生的自尊心会受到伤害。以后参与性不高,学习兴趣不浓厚。所以在课堂上不管是对于上课积极思考回答问题还是考试成绩名列前茅甚至成绩提升较快者,老师可以通过语言、物品来奖励。奖励的形式和奖品可多样范围,也可一次一次扩大。这样的話,在以后教学中,学生不但没有了心里负担,反而个个会抢着回答问题。在学生回答老师的问题,老师在给予评价这是评价的方式之一。我们还可以进行学生与学生的互相评价,因为他们的评价往往是站在同一个高度来看问题,这样更直接,也更容易被学生所接受。还有就是学生们在评价别人的同时,自己也会加深认识,甚至是对问题的理解上升一个层次,从而提高学生的比较和分析能力。更重要的是学生们的相互更有利于调动学生的学习积极性,使学生成为学习的主人,还使同学们思维能力和语言表达能力也得到了提高。
除了课堂上的鼓励之外,我们老师在同学们的作业中也可以采用鼓励性的语言,做的好的同学给予一朵大红花,有进步的同学给予一个大大的赞,有的时候一旦发现书写凌乱,潦草,于是,我批语道:“如果你是乖孩子,从现在开始,作业正确的多一点,字写得漂亮点,老师就奖你一个笑脸。”当学生看到这样的批语的时候作业真的变样了。其实,不管是在课堂还是在批改作业的时候,我们老师只要发现学生的闪光点我们都要进行表扬,对于答案不完美我们也要给予鼓励,让其更加有信心,有勇气面对学习,只有这样,学生才会对语文的学习感兴趣[3]。
二、借助现代教学媒体。
苏霍姆林斯基曾说过:“学生应该在美、游戏、童话、音乐、图画、幻想、创造的世界里,当我们想教他们读和写的时候,仍然应当使他们置身于这个世界里。”教育学家乌申斯基说:“没有任何兴趣和仅靠强迫维持的学习会扼杀学生的学习热情,这种学习是不会维持长久的。”实验心理学家日赤拉曾做过两个实验:人类获取信息的83%来自于视觉,11%来自于听觉,3.5%来自于嗅觉,1.5%来自于触觉,1%来自于味觉。另一个实验是关于知识记忆持久性实验,实践证明:人们一般能记住自己阅读内容的10%,自己听到内容的20%,自己看到内容的30%,自己同时看到和听到内容的50%。运用多媒体可以无限延伸人的各种感官、无限拓展时间和空间领域[4]。的确,兴趣非常重要,学生没有兴趣,学习语文,学好语文就是一件难事。传统的语文教学就是一张黑板,一支粉笔,一本教科书。很多课文老师讲起来是非常的枯燥,学生很难懂得其中的意思。这样的语文教学老师难教,学生难学,语文教学效果可想而知。
随着时代的进步和科技的发展,如今很多学校都安装了多媒体。多媒体的发展则给予了学生更广阔的空间,我们老师可以利用多媒体促使语文训练趣味化、生活化。因为,多媒体课件极大满足了学生感官需求,激发了学生学习兴趣,缩短学生从形象思维到抽象思维的距离,达到“启其所感,导其所难”的目的。我在教学《望庐山瀑布》一文时,并不作多余的叙述,直接请学生欣赏一段关于庐山瀑布的视频,学生被瀑布气势及周边的独特景色所吸引,学习起来很认真。在讲解课文时,学生对于瀑布的整体形状、瀑布的声音理解水到渠成,十分轻松。可见,运用多媒体技术,创设良好的学习氛围,使学生能愉悦地、主动地学习知识的前提[5]。
参考文献。
[1]时莉莉.浅析如何构建自主高效的小学语文课堂[j].群文天地,2012,(10):176.
[2]秦仕红.浅析构建小学语文高效课堂的策略[j].读书文摘,2014,(24).
[3]王朋芳.浅谈构建小学语文高效课堂的几点策略[j].关爱明天,2015,(10).
[5]王萍.浅析如何打造小学高效语文课堂[j].中学课程辅导:教学研究,2014,(33).
精选数学悖论的论文(案例19篇)篇三
大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。
大学数学;教学;渗透;数学文化。
数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。但是数学文化与其他文化相比较,也有其本身的独特性。数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。
大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的.内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。对于增强学生全方面的能力有着重要的意义。
大学数学教师应当加强对学生的数学文化教学,对于学生的数学解题思维进行培养,在数学课程教学中逐渐渗透数学文化的魅力,将数学文化具体融入教师的教学中,增强学生对于数学文化的了解,激发学生学习数学的积极性,提高学生发现问题、解决问题的能力。在大学数学教学实践中,教师也应当加强自身对于数学文化的理解,转变传统的教学方式,在数学教学中不仅要重视对学生数学知识的教学,还要重视起对学生数学思维能力的教学,结合学生的实际数学学习情况,由浅入深对学生灌输数学知识,将数学文化与数学教学系统化的整合,逐步提升学生的数学学习和解题的技能,鼓励学生之间相互学习、相互竞争,在合作和竞争中学习数学知识、锻炼数学技能,发挥学生学习的主观能动性,改变过去教师讲学生听的教学模式,使学生能够主动学、主动问,从而使学生的数学成绩能够不断提升。
2.丰富教师教学方式。
大学数学教师应当不断丰富教学方式,利用多种教学手段,使学生能够更好地接受数学文化,学习数学知识。数学作为理科学科相对于文科学科学习起来更难也更枯燥,许多数学公式和定义比较复杂,不利于学生的记忆和理解,因此大学数学教师可以充分发挥数学文化教学的优势,增加数学教学课堂的趣味性,通过多媒体为学生播放一些和课本内容相关的视频,加深学生的数学学习记忆,在数学知识的教学前可以先用数学文化当作铺垫,吸引学生的注意力,使数学的学习不再枯燥,为学生的数学学习营造出轻松愉快的氛围。例如,某大学数学教学中,教师利用多媒体为学生播放了线性代数的相关图片,为学生解释了矩阵的概念、基本运算、矩阵的初等变换与矩阵的秩、逆矩阵和线性方程组解的判定,结合学生的实际生活进行举例,“a城市是所有大学学生毕业后向往的城市,而b城市则因为经济落后成为大学学生毕业后都想走出去的城市,假设b城市中每年有35%的人来到了a城市,而a城市每年仅有15%的人来到b城市,a城市的人口总共有1000万,b城市的人口有600万,两个城市的人口总数不变的情况下,5年后a城市和b城市的人口分别有多少,在很多年以后,两个城市人口的分布是否会出现稳定的一个状态?”该案例激发了学生对于线性代数学习的积极性,有效地提高了学生在数学课堂上学习的效率。
各大学在数学课程设计上可以结合学生的实际情况,适当增加数学文化课程,加强学生对于数学文化内涵的学习,使学生能够形成系统化的数学学习理论体系。例如,某大学在结合学生实际课程情况的基础上,增加了数学历史的课程,使学生了解了古代埃及数学的成就主要来源于纸草书、《九章算术》中的“阳马”指的是棱锥、射影几何产生于文艺复兴时期的绘画艺术、“非欧几何之父”的数学家是罗巴切夫斯基、最早使用“函数”术语的数学家是莱布尼茨、积分学早于微分学出现等等相关的数学历史知识,促使学生能够完善自身的数学学习,详细了解了数学相关历史和发展情况,拓展了学生的知识层面,加深了学生对于数学的理解,使学生在大学数学课堂上能够更好地配合教师的教学。
[1]陈朝坚.大学数学教学中渗透数学文化的途径[j].开封教育学院学报,2014.
[2]陈朝坚.在大学数学教学中渗透数学文化的思考[j].湖北成人教育学院学报,2013.
[3]陈梅.浅谈数学文化在大学数学教学中的渗透[j].长春理工大学学报,2011.
精选数学悖论的论文(案例19篇)篇四
摘要:小学教育中,数学是非常重要的一项基础学科,但是由于这门学科具有较强的抽象性,因此很多小学生在对这门学科的学习中会比较容易出现各种问题。小学数学学困生这一问题也对提高数学课堂教学效率造成了一定程度的影响,并且直接影响到了学校整体的教育教学质量。当前阶段对于数学学困生的转化已经成为学校和教师共同关注的一个问题。本文针对小学数学学困生形成的原因进行了分析,并对此提出转化策略。
关键词:小学数学;学困生;转化策略。
随着近些年来教育改革的不断推进,小学阶段的教育中也明确的提出:在学习过程中要让小学生得到全方位的发展,不出现偏科的现象。目前小学阶段的教育中,语文和数学还是最主要的两门学科,相对于数学课程来说,小学语文因为有较强的故事性,所以更容易被小学生所接受。很多小学生会认为学习数学很枯燥,除了背加减乘除法的口诀就是背一些数学公式,表现在课堂教学中就是注意力很难长时间集中,给小学数学的教学工作增加了诸多困难。实际教学中,学困生的问题或多或少存在于每个班级,然而学困生的形成大多数都不是因为学生智力的问题。如何转化学困生,是当前我们小学数学教师需要关注的一个重要问题。
1小学数学学困生的成因。
1.1学生缺乏对数学的学习兴趣:小学生难以学好数学的主要原因还是在于学生在学习数学时的态度,大多数学困生会因为觉得数学学科枯燥乏味,因而在学习数学时会比较随意,往往在学习数学的过程中遇到难题就会丧失学习的兴趣。此外,还有的学生因为在其他学科的学习成绩也比较落后,从而导致自信心的缺乏,认为自己不够聪明,学什么都学不好,面对数学更是产生了畏惧心理[1]。这些都是造成学困生不能学好数学的主要因素,同时也让很多小学数学教师大感头疼。1.2教师教学方法有待改进:说到数学教师,很多学生的第一印象都会觉得数学教师大多数都很刻板严肃,学生与教师之间存在距离感。很多小学数学教师在教学过程中很少去关注学生的心理状态,也很少有感情投入,关注的重点往往只在对知识的讲解上。还有少数教师只喜欢数学成绩比较优秀的学生,甚至还有厌恶数学成绩较差的学生,从而造成这些学生产生一定程度的厌学心理。再加之本来就比较枯燥乏味的数学知识。使学生在心理上更加抵触数学,最终导致学生更加难以学好数学。1.3学生缺乏学习数学的良好习惯:学习习惯需要学生通过长期的实践来逐步建立和养成。对于学生而言,学习习惯的好坏对他们的学习效果有着巨大影响。大多数时候,学生的学习品质都是由他们的学习习惯所决定的。学生如果缺乏良好的学习习惯,那么他在学习的过程中就很容易出现如:学习目标不明确、学习态度不端正以及学习意志不强等问题,而在这些问题的影响下,学生更难以建立良好的学习习惯,如此一来就会形成恶性循环,最终使学生的学习效果大打折扣。大多数学困生的不良学习习惯都表现为:课堂上注意力不能集中、不愿意主动思考问题、无法独立完成数学作业、没有良好的读题和审题习惯以及完成解题后没有检查和验算的习惯。
2小学数学学困生的转化策略。
2.1培养学生的学习兴趣:数学这门学科的特点是科学和严谨,同时数学还是一门具有抽象性的学科,这也是学困生不能学好数学的主要原因。要让学生学好数学,就需要把抽象的数学知识直观的展现给学生,使其能够更加吸引学生的注意力,从而使学生的学习情趣得到提高。由于小学生年龄还小,通常都比较好动,容易对身边的新鲜事物感兴趣。因此,小学数学教师需要充分利用小学生的这一特点[2]。例如:在教学长方形和正方形的时候,教师可以给学生布置一项课后作业,让他们回家之后利用废纸张自己动手制作长方体和正方体的盒子各一个,同时教师要指导学生如何裁剪和粘贴制作纸盒,制作过程中可以参照自己的铅笔盒和家中的收纳盒等。最后要还要在课堂上表扬做得好的学生,以及耐心的指正做得不太好的学生。这样一来,既帮助学生加深了对长方形和正方形授课内容的理解,也锻炼了学生的动手能力,同时还达到了激发学生创作热情,增加学生学习兴趣的目的。2.2改进教学方式:教师要积极改进当前的教学方式,教学流程要根据教材的特点进行合理的设计,同时要采取灵活多变的教学方法,组织和开展例如:分组讨论、合作探究以及动手操作等多种新式的教学模式。把数学知识与实际生活紧密联系起来,使数学知识更加直观,从而让学困生也能够积极的参与学习活动,让他们从中体验和感受到学习的乐趣,并且接受所学的内容,以此帮助他们树立学好数学的自信心。同时教师还可以在课堂教学的过程中多为学生介绍有关数学的发展史和小故事,营造一种轻松愉快的课堂教学氛围。此外,教学时还需要注意因材施教,针对学生不同数学水平提出不同的要求,由于数学学困生逻辑思维能力较差,教学过程中要尽量从他们的实际水平出发,深入浅出的进行教学,适当降低对学困生的要求标准,尽可能让所有学生都能在原有的数学基础上发挥出最大的潜能。2.3培养学生良好的学习习惯:学生良好的学习习惯可以有效的促进他们学习能力的提升。因此,在实际教学过程中,教师要注重培养学生良好的学习习惯。在学生有良好的表现时,要及时的给予表扬,并且尽量的为其创造条件使其能够重复出现,从而使学生形成习惯。对于那些不良的表现,教师也要及时的给予否定,使其出现的机会减少。教师要同时注重引导学生进行自我评价和自我分析,以此增强他们学习的主观能动性和自觉性,进而达到促进良好学习习惯养成的目标。在教学过程中,教师可以根据学生的个体差异为其制定学习目标,并且经常对目标的完成情况进行验收,发现有不合理的地方要及时的进行修改。尤其是在目标制定的初始阶段,不能给学困生制定过高的学习目标,要让他们从中能够体会到完成目标时的成就感。教师要及时给予他们表扬和鼓励,帮助其养成给自己制定学习目标的好习惯。
3结语。
数学学困生的转化工作不是一朝一夕就可以完成的事,数学教师要有足够的耐心,细致有效的开展这项工作,既要帮助他们改变对数学学科的思想认识,同时还要激发他们学习数学的兴趣,树立学好数学的自信,养成良好的数学学习习惯。才能让他们热爱数学,学好数学。
参考文献。
[1]刘艳芝.探究小学数学教学对学生兴趣的培养[j].中华少年.科学家,2017.(01):120-121.
[2]赵广江.小学数学教学方法与学习心理分析[j].林区教学,2017.(01):83-84.
精选数学悖论的论文(案例19篇)篇五
小学中年级的数学教学是小学生从数字向数学概念转变为主的,这一时期的数学学习对小学生数学的兴趣和自主学习能力的培养至关重要。那么,具体应该如何培养小学生的自主学习能力呢?笔者认为,首先就是培养学生的课堂自主提问能力。可以说,学生在课堂上学会自主提问,是学生对知识进行思考和学习的具体表现。这也从侧面体现出小学中年级学生课堂自主提问能力培养的意义。对于小学生来说,兴趣可以促进其学习,所以,提高学生对数学课的兴趣也是保证学生学习效率的重要条件。而且,小学数学课对学生开放性思维的培养也起到极为重要的作用。而学生开放性思维的具体表现就是学生对课堂问题的不同见解与不同思维,那么如何才能做到了解并培养学生的开放性思维呢?首先要鼓励学生的课堂自主提问。小学生的课堂自主提问是教师了解和培养学生开放性思维的重要途径。学生在课堂上自主提问,从某些方面来说打破了我国传统的教育方式,让学生成为了课堂的主人,实现了教师作为引导者引导学生自主探索和研究的角色转换。这种学习方法将会越来越受重视,更加会逐步应用于不同的学校之中。所以,培养小学中年级学生课堂自主提问能力是我国小学教育改革的重要起点。
学生在课堂上的主动提问就是学生主动求知的具体表现,这种表现主要来源于学生对学科的兴趣和求知欲望。也就是说,培养小学中年级学生课堂自主提问能力的方式就是从培养学生的兴趣开始的。笔者认为,对小学中年级学生课堂自主提问的培养应该从以下三个方面进行:
(一)运用情景教学激发学生的兴趣。
情景教学是很多学科教育的重要研究方法,因为情景教学能够将学生所学知识通过直观的形式表现出来。具体的实施方案就是以角色扮演或者情景引入等方法让学生们以表演的形式接触所学知识,是寓教于乐的代表做法之一。而传统的教学方式以集体教学为主,更加强调的是知识的正确性与知识的传授,并没有真正做到与小学生的沟通。这样的做法无疑会让小学生失去学习的兴趣,从而对数学产生抵触情绪。这不仅不利于教学目标的实现,反而会影响学生以后的学习。根据许多心理学家对小学生心理的研究发现,只有与同龄心理极为接近的教育方式才能受到小学生的认同与接受。而情景教学能够有效地调动小学生对数学的兴趣,激起学生的求知欲望,进而提高小学生的课堂自主提问能力。
(二)培养学生与教师之间的沟通理念,消除学生对教师的畏惧心理。
尊师重教的传统思想导致很多学生对教师的'感情只有敬畏,所以如果不能消除学生与教师之间的隔阂,就无法让学生进行自主的课堂提问。要消除学生与教师之间的隔阂,主要要通过教师与学生的合理沟通以及教师对教学办法的改变,要让学生成为课堂的主人,而教师要作为学生的指导者,引导学生领略数学的精彩。只有这样,学生的求知欲望才能被激起,才能真正提升课堂自主提问能力。
(三)结合实际问题,增强小学生对数学实际应用的好奇心。
在小学生理解了数学的一些抽象概念后,教师可以利用实际生活的一些有意思的案例让小学生们知道数学的广泛应用性。其具体目的是培养小学生的发散思维能力。而且,先由教师带领将数学内容应用在实际生活中,再由小学生自己结合实际想出一些案例,这对学生的思维发散会起到推动作用,也为小学生的创新思维的培养提供了有利措施。综上所述,培养小学生自主学习能力的方法之一就是让学生在课堂上能够自主提问,因为小学生的自主提问说明学生对所讲内容有了独立的思考和想法。数学教师要不断探索和实践,并总结教学经验,为培养小学生的自主提问能力而努力,以便更好地提高小学生的数学素养。
精选数学悖论的论文(案例19篇)篇六
在数学课堂教学改革不断深入的今天,班级的学困生已更多地得到关注与重视。如何有效激发他们的学习兴趣,让他们也能体验到成功与快乐,教师可从情感、教法、帮扶、作业等方面着手,促使学困生得到有效转化、提升。
小学数学;学困生;有效转化。
由于学生的学习习惯、知识接受能力等方面的差异,每个班级都有一些学困生,他们需要教师从情感、教学方法等方面予以关心与帮助。创设平等对话的课堂氛围,实施灵活有效的教学方法,建立平等互助的帮扶小组,设计个性鲜明的分层作业,都能有效地激发学困生的学习兴趣,提升他们的学习能力,让他们体验到成功与快乐,笔者在日常数学教学中进行了一些相关尝试,取得了一定的效果。
1、营造平等对话的氛围,主动拉近师生距离。
“和、爱”教育是我校的办学特色,构建和谐、愉悦的数学课堂,是促使学困生不断前行的动力。作为教师,需要营造民主、和谐、愉悦的对话氛围,给予学困生更多展示自我的机会,让他们感受来自老师与同伴的爱与关注。事实上,一个亲切的问候,一个赞赏的目光,都会激发学困生不竭的'学习动力。如在教学四年级(下册)“平移与旋转”单元第二课时,我先让学生回答小船先向xx平移了xx格,再向苦xx平移了xx格。学生高高地举起手,看着小军同学举起的手又悄悄收回去了,似乎想要回答,我微笑地对他说:“没关系,你试试看,相信自己,一定能行!”他轻声地讲述了小船平移的过程,介绍了数平移格数的方法,尽管还不是很有条理,声音也不够响亮,但同学们马上给以热烈的掌声,使他获得了自信与快乐。
2、灵活多变的教学方法,促进学生主动参与。
学困生接受知识有些缓慢,思维能力也不够强。因此在教学方法上要做到灵活多变,教师语言要生动形象,能关注到他们的认知经验和接受能力,降低难度,分散难点。如在教学四年级(上册)“用画图的策略解决问题”时,学困生对如何画图表示有很大困难。教学中,教师没有采用多媒体动态演示,而是采用及时提问的方法:“长减少是什么意思?”长减少就是将原来的两条长变短了,面积自然就会比原来的减少。所以我们画图时先要找到长,想想变短了的意思,再动手画。这样教学方法的改变唤醒了学生的无意注意,难题就顺利而解了。又如,为帮助他们提高解决问题的审题能力,可以引导他们先读题,圈出关键字、说出关键字的意思,简要复述题目,再分析数量关系。如求平均每个季度用水多少吨,可自行提问,由平均每个季度想到一年有几个季度。这样坚持训练,学生的审题能力和分析能力可以得到进一步的提升。
3、帮扶互助,提升辅导实效。
实践表明,儿童之间的交流有时比师生之间的交流更为融洽,他们以儿童特有的对话方式,互帮互助,共同提高。教师要用更多的时间帮助这些学生,走近他们的心灵,及时辅导,帮助他们克服学习上的困难,疏导思想上的困惑。在班级中,我们让每个学困生自行找一个数学成绩优异的同学做自己的师傅,结成帮扶对子,教师帮助建立帮扶档案,定期对帮扶效果进行评价,予以表扬奖励。课堂上的小组探究,课间、放学后的悉心辅导随处可见,帮扶效果显著。如在教学“认识角”这节课时,在动手创造角的环节,各小组利用教师提供的材料或自己的材料创造角,师徒动手。小组内有这样的一段对话:“我用吸管做出了个角,你来指指角的顶点和两条边。对,指边的时候要从顶点开始,汇报时,不要紧张,声音要响亮,你一定行。”这样的对话,无疑是师傅对徒弟的一种鼓励与肯定。果然,小组汇报时师徒两人,一人展示,一人能说,配合默契,精彩纷呈。
4、布置弹性作业,体验快乐学习。
精选数学悖论的论文(案例19篇)篇七
处于小学阶段的学生对事物的接受能力较弱,因此对于小学数学教学就需要制定适合小学生特点的教学方案。就“千克与克”这个问题的教学来看,需要我们能够结合实际生活,给他们以真实感,减小他们理解的难度,从而优化教学效果。
小学数学、千克与克、教学。
小学阶段对质量的认识包括千克、克与吨,然而质量的计量不能像长度单位那样直观,需要借助天平等工具的测量才可以得知。而小学生对抽象事物的接受能力较低,这就给小学数学教学带来了很大的难度。因此,如何帮助小学生建立正确的质量观念成为我们小学数学教师要研究的首要课题。
数学在生活中无处不在,在生活中建立数学观念对学生的数学学习有极大的帮助。质量单位在生活中的应用很是广泛。因此在学习质量单位之前去生活中做一些调查,对学生的质量单位的理解是有很大帮助的。在生活中,大家都接触过物体的轻重问题,这样便对质量单位的理解有了一定的基础。但实际上,我们在日常生活中很少使用“千克”和“克”来衡量物体的质量,而是使用“斤”、“公斤”、“两”等单位,这样使得学生对国际通用的质量单位“千克”和“克”的概念不是很清楚。所以,针对这种情况,让学生在正式的学习前,对“千克”和“克”在生活中的应用展开调查,亲身感受“千克”和“克”的.概念,和不同情况下不同单位的使用也不同。
1、创设情境,体验数学学习的乐趣。
例如在讲“千克与克”中,设计“小学生到熟悉的超市购物”情节。在课堂上老师是超市的导购阿姨,小学生来选购放在讲台桌上的奶粉、火腿肠、袋装饼干、奶茶等物品。安排三名不同的学生来分别选购,确定后就交给“导购阿姨”称重。讲台桌上有一台天平,导购阿姨首先称量了一根火腿的重量,告诉大家是50克。之后给学生称重前首先要其对自己选择的物品进行质量估计,其次进行实际称重。a同学选择一袋奶粉,估计是400克,称量结果是450克;b同学选择5小包袋装饼干,估计是90克,称量结果是110克;c同学选择3包奶茶,估计50克,称量结果是40克。通过教学情景的设计,学生不仅能够锻炼自己去超市买东西的能力,也通过对物品的称量有了质量的简单认识。通过一根火腿肠50克进行直观的体会,学习简要估计物品质量的技能。在有了质量的认识后,教师可以进行课程内容的讲授。
2、动手实践,体验数学活动的探索过程。
例如可以给定10根50克的火腿肠、5袋100克的饼干,让学生亲自动手称量验证这两种所给物品各自的总重是否为500克;将称好的500克的袋装饼干给学生数,看500克的质量下可以有多少袋小饼干;将一根火腿肠放在学生左手,另外一个手上是若干袋饼干,掂量哪个重,最后再判断其质量范围。
3、建立常用质量单位在实际中的正确使用方法。
单纯地学习质量的计量单位,不是教学的根本目的,其根本目的是让学生学会如何正确使用“千克”和“克”。好多时候,在实际中对物体重量的估计,都有一定的参照。因此,可以教授学生如下方法:
总的来说,对于质量较轻的物品,我们采用“克”来作为计量单位;而对于较重的物品,可以采用“千克”作为计量单位。另外,我们对于物品质量的估计,还可以采取选择参照物的方法。一般来说,一个鸡蛋的质量大约为50克,而我们可以根据其他和鸡蛋质量相差不多的物品的质量,或者质量为鸡蛋质量多少倍的物品来估计。平常我们所说的质量单位“斤”和“公斤”也应对学生讲解清楚:1公斤等于1千克,而1公斤等于2斤,即1千克等于2斤。
通过学生课前在生活中的调查,相信学生对“千克”和“克”这两个国际质量单位有了初步的认识;之后又通过课上的知识讲解和学生自己动手测量与实验,使学生对“千克”和“克”有了进一步的理解。因此,在课后进行一定的总结和加深,对于学生对“千克”和“克”的认识,具有一定的巩固作用。于是,可以设置作业如下:下课后,大家回去根据自己之前的生活调查和课上的学习,写一篇关于质量单位的小日记,总结一下自己的收获,或者表达一下自己对“千克”和“克”的认识。
总之,对于小学数学的教学要充分考虑到学生对事物的接受和认知能力,加强教学与生活的关联性,降低小学生的理解难度。多结合实际,充分调动学生的学习兴趣,激活学生思维和探索的积极性,使学生能够在轻松的教学环境下学习到应有的数学知识,从而达到提高教学质量的目的。
精选数学悖论的论文(案例19篇)篇八
某学校为了提高本校教师的教学素质特聘请一位思维培训师来学校讲课,虽然校方领导对此事十分热心,但绝大多数教师对此却不以为然,于是他们暗中商量决定,在上课时先给思维培训师来个下马威,煞煞他的锐气。
第二天,当思维培训师走进教室时,看到教室里座无虚席,教师们不论是年长的还是年幼的,都一个个正襟端坐,像小学生一样认真。思维培训师虽然经历过不少的大场面,但是看到今天这个阵势心里仍不禁有点发慌,这毕竟是在给老师们上课,不同于以往的学员,可能在座的哪一位教师的教学经验都比自己丰富,给他们讲课可真有点班门弄斧的味道。
不过思维培训师还是很快地调整了自己的心态,镇定自若地走上了讲台。在一番开场白过后,正当他准备按照自己的思路开始讲课时,一位青年男教师举手示意要求发言,在得到允许后他说:“老师,今天的课能不能不按照讲义讲,先谈谈学习思维对我们的教学有什么实际作用好吗?”
思维培训师虽然感到有些突然但却不觉得奇怪,这是在思维培训中经常遇到的事情,于是他笑着说:“可以,那么你希望我先结合那门课程来讲呢?”那位青年男教师说:“我是教小学一年级数学的,能不能就先讲讲在给孩子们上数学课时怎样教他们思维?”话音刚落,教师们发出一阵哄堂大笑。思维培训师也笑了,他说:“这倒是一个不坏的主意,那好,我们就先从小学一年级的数学课开始讲。”
听到他这样讲,教室里马上就安静下来了,教师们倒要看看这位思维培训师还有什么惊人的下文,只见思维培训师不慌不忙地拿起一支粉笔在黑板上写下了一道算式:2+3=?然后他指着这道算式讲:“这是一道在小学一年级很普通的计算题,每个学生都会做大量的类似练习,从数学的角度上来讲,只要学生在计算过程中不出差错,得出了正确的答案,老师就会认为学生在学习中没有什么问题,达到了教学大纲所要求的合格标准。但是从思维的角度来看,这种教育方式会造成严重的思维弊端。”
下面本站小编再为大家介绍一下关于收敛思维与发散思维的区别,欢迎大家继续阅读下去。
1、思维指向相反。
收敛思维是由四面八方指向问题的中心,发散思维是由问题的中心指向四面八方。
2、两者的作用不同。
收敛思维是一种求同思维,要集中各种想法的精华,达到对问题的系统全面的考察,为寻求一种最有实际应用价值的结果而把多种想法理顺、筛选、综合、统一。发散思维是一种求异思维,为在广泛的范围内搜索,要尽可能地放开,把各种不同的可能性都设想到。
收敛思维与发散思维是一种辨证关系,既有区别,又有联系,既对立又统一。没有发散思维的广泛收集,多方搜索,收敛思维就没有了加工对象,就无从进行;反过来,没有收敛思维的认真整理,精心加工,发散思维的结果再多,也不能形成有意义的创新结果,也就成了废料。只有两者协同动作,交替运用,一个创新过程才能圆满完成。
精选数学悖论的论文(案例19篇)篇九
世界文学名著《唐·吉诃德》中有这样一个故事:
唐·吉诃德的仆人桑乔·潘萨跑到一个小岛上,成了这个岛的国王。他颁布了一条奇怪的法律:每一个到达这个岛的人都必须回答一个问题:“你到这里来做什么?”
如果回答对了,就允许他在岛上游玩,而如果答错了,就要把他绞死。
一天,有一个胆大包天的人来了,他照例被问了这个问题,而这个人的回答是:
“我到这里来是要被绞死的。”
请问桑乔·潘萨是让他在岛上玩,还是把他绞死呢?
如果应该让他在岛上游玩,那就与他说“要被绞死”的话不相符合,这就是说,他说“要被绞死”是错话。既然他说错了,就应该被处绞刑。
但如果桑乔·潘萨要把他绞死呢?这时他说的“要被绞死”就与事实相符,从而就是对的,既然他答对了,就不该被绞死,而应该让他在岛上玩。
小岛的国王发现,他的法律无法执行,因为不管怎么执行,都使法律受到破坏。他思索再三,最后让卫兵把他放了,并且宣布这条法律作废。
这又是一条悖论。还有一个由数学家伯特兰·罗素(russel,1872—1970)提出的悖论与之相似:
在某个城市中有一位理发师,他的广告词是这样写的:
“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”
来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
罗素的这条悖论使集合理论产生了危机。德国的逻辑学家弗里兹在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”
由于形形色色的悖论的研究,促进了数学理论基础的研究,使数学更进一步发展,更坚实地建立在牢固的基础之上。
将本文的word文档下载到电脑,方便收藏和打印。
精选数学悖论的论文(案例19篇)篇十
数学悖论是人们在探索数学领域中常常遇到的一种现象。它们是指在逻辑上似乎推导正确,但结果却出人意料的错误。数学悖论对于我们理解数学的逻辑和思维方式有着重要的影响。在我个人的学习过程中,我对数学悖论进行了深入的思考和研究,下面将分享我的心得体会。
首先,数学悖论告诉我们相信直觉不总是正确的。数学是一门严谨的学科,它要求我们通过推导和证明来建立和验证定理。然而,有时我们的直觉会误导我们,使我们对数学问题做出错误的判断。例如,著名的博弈论悖论中的囚徒困境问题,以及康托尔的对角线证明,都展示了直觉与数学逻辑之间的矛盾。通过研究和理解数学悖论,我们明白了数学需要严格的思维和逻辑推理,不能仅仅依赖于直觉去判断。
其次,数学悖论提醒我们要警惕隐藏的矛盾。在数学领域中,我们常常面对复杂的问题,需要通过多个步骤来推导出结果。然而,有时候这些步骤中可能存在矛盾或错误,导致最终结论与我们的期望不符。数学悖论就是这样一种隐藏的矛盾。它们通过逻辑推理的方式呈现出来,使我们意识到我们在推导过程中容易忽略或轻视的矛盾点。只有当我们能够找出这些隐藏的矛盾,并加以纠正,才能够得到正确的结果。
第三,数学悖论强调了数学的非完备性。在哥德尔的不完全性定理中,他证明了一个重要的结论,即任何一个包含自然数运算的公理系统都无法同时具备完备性和一致性。这意味着在数学系统中,我们无法通过有限的公理和规则来解释和证明所有的数学命题。这一事实揭示了数学的无穷性和复杂性,提醒我们在数学理论中要保持谦逊和开放的心态。数学悖论引发了我们对数学本质的思考,使我们对数学的认识更加深刻和全面。
第四,数学悖论鼓励我们从错误中学习和创新。数学悖论的存在是因为我们在数学推导中所依赖的逻辑系统有其自身的局限性。这种局限性可以促使我们去寻找新的方法和思维途径来解决问题,从而推动数学的发展和进步。康托尔的集合论悖论就是一个很好的例子。通过对集合论悖论的研究,数学家们不仅修补了集合论的基础,还提出了新的数学概念和结构,推动了数学的发展。
最后,数学悖论启示我们要保持怀疑的态度。在数学领域中,我们常常被传统的理论和证明所束缚,很少去质疑它们的正确性。然而,数学悖论告诉我们要勇于挑战和怀疑已有的结论和推导过程。只有通过不断地质疑和探索,我们才能够发现隐藏的错误和矛盾,进而对数学领域做出更深入的理解和贡献。
综上所述,数学悖论是一个令人兴奋和富有挑战性的研究领域。通过对数学悖论的思考和研究,我们能够深入理解数学的逻辑和思维方式,增强我们的数学思辨能力,同时也为数学的发展提供了新的思路和方法。因此,我相信通过对数学悖论的研究与学习,我们能够在数学领域中取得更大的进步。
精选数学悖论的论文(案例19篇)篇十一
1、数学真好,又好玩。
小明平时不喜欢数学。一天,从天上掉下来一个数学专家,它叫“小数”。小明问小数你是从哪来的。小数说:“火星”来的。小明说:“你为什么到这里来呢?”小数说:“帮这个小镇不喜欢数学的人喜欢数学。”小明说:“我不喜欢数学。”小数说:“我帮你。你看一根铅笔是一根,两根是两根。一根+一根=多少。”小明说:“我知道是两根。”“现在你喜不喜欢数学了?”小数问小明。小明大声回答:“喜欢!”小数说:“我也该走了,再见!”小明说:“再见!谢谢你教我。从此,小明不仅数学学得好,他还觉得数学很好玩呢!
2、12的来历。
从前,1字是一个贪吃鬼,它整天在家里睡觉。有一天,它正在大街上散步,突然看见一辆车,车厢里装满了水果。1字口水流下了3尺多,他趁司机2不注意,跳上架子车,开始大饱口福。“一根香蕉还不够,要再吃一根。”1字边说边吃。不知不觉,车厢里剩下的水果已经一无所有了。
转眼间,车厢里只剩下大肚子的1和水果皮了。5字拉着车子爬一段陡坡时,由于路面不平,车子一颠一簸,1字差一点被摔下来了。车子拉到河岸旁时,被一块石头绊了一下,车子一颠,2字、1字全都掉入河水里去了。2字特别机灵,一下子就爬上岸,而1字由于吃得太多,只能在水里挣扎着大喊:“救命啊!”
2字见此情景,急忙跑到不远处,找来一根长竹竿,把竹竿的一头伸向1字,并叫1字用手紧紧的抓住竹竿。1字费了九牛二虎之力才抓到竹竿,2字笑得脸都要红了。
1字不好意思的对2字说:“2字,真对不起你,我吃了你的所有的水果,你反而还救我,谢谢你。”“不用谢,这是我应该做的!”2字高兴的说:“我们做个好朋友吧!”
从此以后,1字和2字总是形影不离,12这个数字便诞生了。
3、红狐狸教算术。
小猴、小鹿和小白兔望着算术题想啊想,红狐狸问:“算出来了么?”数学与童话。
小鹿说:“一加一等于二。比方说吧,我是一个,我和妈妈加到一起,不就是1+1=2么?”红狐狸说:“你算对了。”
小猴跳起来叫道:“小鹿算得不对,我说,1+1的答案应该是1。比方说,一只青蛙吞了一只蚱蚂,它们加道一块就成了1+1=1。”红狐狸也点点头说:“小猴,你也算对了。”
小兔听了小猴、小鹿的回答,糊涂起来了。这时,红狐狸走过来问小兔:“你算出来了么?快说说!”小兔想起来前天林子边的遭遇,说:“1+1=0。”
小猴、小鹿都说:“不对!不对!”
小兔说:“那天我看见老鹰叼住银环蛇飞到天空,银环蛇用毒牙咬掉老鹰的大腿,老鹰也用嘴猛啄毒蛇的颈部。转眼间,他们都从天空中掉下来死了。林子里有个规矩,不论是谁,一死就不算数了,等于0。这样,他们加到一起,不就成了1+1=0了吗?”
红狐狸说:“你们都很聪明,都对了!”
4、数字王国。
在数字王国里,生活着0、1、2、3、4、5、6、7、8、9。
一天,它们碰在了一起,9非常看不起他们,因为他们都太小了,尤其是0。9非常骄傲,就不跟他们一起玩,0很伤心,1、2、3、4、5、6、7、8就来帮助0,他们想了一个好办法,1在0前面,就变成了10。10和9碰到了一起,9很惊讶,比自己还要大,然后2在0的前面就变成了20,20也和9碰到了一起,9显得更小了。这时,9就知道了天外有天,人外有人。从此以后,9再也没有看不起他们了,他们成了好朋友,快乐的生活在一起。
5、有没有赚钱。
我们可以这样想:先从“波尔用10元买回一只小狗,不久,他以15元卖出,”可求出,波尔赚了15—10=10(元)。再从“后来,他以20元买回,不久,又以25元卖出,”可求出波尔又赚了25—20=5(元)。
这样,先后两次买进卖出,一共赚了5+5=10(元)。
其实,我们还可以这样想:用两次卖出的总钱数减去两次买进的总钱数,可以看出波尔有没有赚钱。从题目中可以知道,波尔先后买小狗用去了10+20=30(元),先后卖小狗得了15+25=40(元)。因此,波尔赚了40—30=10(元)。
精选数学悖论的论文(案例19篇)篇十二
世界文学名著《唐·吉诃德》中有这样一个故事:
唐·吉诃德的仆人桑乔·潘萨跑到一个小岛上,成了这个岛的国王。他颁布了一条奇怪的法律:每一个到达这个岛的人都必须回答一个问题:“你到这里来做什么?”
如果回答对了,就允许他在岛上游玩,而如果答错了,就要把他绞死。
一天,有一个胆大包天的人来了,他照例被问了这个问题,而这个人的回答是:
“我到这里来是要被绞死的。”
请问桑乔·潘萨是让他在岛上玩,还是把他绞死呢?
如果应该让他在岛上游玩,那就与他说“要被绞死”的话不相符合,这就是说,他说“要被绞死”是错话。既然他说错了,就应该被处绞刑。
但如果桑乔·潘萨要把他绞死呢?这时他说的“要被绞死”就与事实相符,从而就是对的,既然他答对了,就不该被绞死,而应该让他在岛上玩。
小岛的国王发现,他的法律无法执行,因为不管怎么执行,都使法律受到破坏。他思索再三,最后让卫兵把他放了,并且宣布这条法律作废。
这又是一条悖论。还有一个由数学家伯特兰·罗素(russel,1872—1970)提出的悖论与之相似:
在某个城市中有一位理发师,他的广告词是这样写的:
“本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!”
来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。
罗素的这条悖论使集合理论产生了危机。德国的逻辑学家弗里兹在他的关于集合的基础理论完稿付印时,收到了罗素关于这一悖论的信。他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟。他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”
由于形形色色的悖论的研究,促进了数学理论基础的研究,使数学更进一步发展,更坚实地建立在牢固的基础之上。
精选数学悖论的论文(案例19篇)篇十三
摘要:
数学常常被人们认为是自然科学中发展得最完善的一门学科,但在数学的发展史中,却经历了三次危机,人们为了使数学向前发展,从而引入一些新的东西使问题化解,在第一次危机中导致无理数的产生;第二次危机发生在十七世纪微积分诞生后,无穷小量的刻画问题,最后是柯西解决了这个问题;第三次危机发生在19世纪末,罗素悖论的产生引起数学界的轩然大波,最后是将集合论建立在一组公理之上,以回避悖论来缓解数学危机。本文回顾了数学上三次危机的产生与发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。
提到数学,我有一种感觉,数学是自然中最基础的学科,它是所有科学之父,没有数学,就不可能有其他科学的产生。就人类发展史而言,数学在其中起的作用是巨大的,难怪有人说数学是人类科学中最美的科学。但在数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。
第三次数学危机发生在19,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。
罗素在该悖论中所定义的集合r,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于r是集合,若r含有自身作为元素,就有rr,那么从集合的角度就有rr。一个集合真包含它自己,这样的集合显然是不存在的。因为既要r有异于r的元素,又要r与r是相同的,这显然是不可能的。因此,任何集合都必须遵循rr的基本原则,否则就是不合法的集合。这样看来,罗素悖论中所定义的'一切rr的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,r也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓zf公理系统),这场数学危机到此缓和下来。
现在,我们通过离散数学的学习,知道集合论主要分为cantor集合论和axiomatic集合论,集合是先定义了全集i,空集,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。
我们应该怎样看待这三次数学危机呢?我认为数学危机给数学发展带来了新的动力。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。然而,矛盾和人们意想不到的事仍然不断出现,而且今后仍然会这样。就拿悖论的出现来说,从某种意义上并不是什么坏事,它预示着更新的创造和光明,推进了科学的进程,我们应用辨证的观点去看待他。
通过数学的发展史和这三次数学危机,我越来越感到m克莱因教授著的一本书,是关于确定性的丧失,其中书中说道:数学需要绝对的确定性来证实自身吗?特别是,我们有必要确保某一理论是相容的或确保其在使用之前是通过非经验论时期绝对可靠的直觉得到的吗?在其他科学中,我们并没要求这样做。在物理学中所有的定理都是假设的,一个定理,只要能够作出有用的预告我们就采用它。而一旦它不再适用,我们就修改或丢弃它。过去,我们常这样对待数学定理,那时矛盾的发现将导致数学原则的变更,尽管这些数学原则在矛盾发现前还是为人们所接受的。因此我们看问题的观念应该改变一下,数学是不确定性的。
不管数学以后向何处发展,但就数学仍然是可用的最好知识的典范。数学的成就是人类思想的成就,作为人类可以达到何种成就的证据,它给予人类勇气和信心,去解决那些一度看上去不可测知的宇宙秘密,去制服那些人类易于感染的致命疾病,去质疑去改善那些人们生活中的政治体系,因此我们说数学在这个大自然中是无处不在的,数学在人类发展中的作用也是不可估量的。
参考文献:
1.梁宗巨世界数学史简编辽宁人们出版社。
2.朱学智等数学的历史思想和方法哈尔滨出版社。
3.袁小明等数学思想发展简史高等教育出版社。
4.确定性的丧失m克莱因湖南科技出版社。
小学生作文(中国大学网)。
精选数学悖论的论文(案例19篇)篇十四
第一段:引言(200字)。
数学,这门看似严谨无比的学科,却也充满了许多令人难以理解的悖论。数学悖论是一种违背常理或直觉的数学结论,它们挑战了人们对数学的实际运用。在学习数学的过程中,我经历了许多数学悖论的探索与思考,这让我意识到数学世界的奇妙之处。本文将结合我的心得体会,探讨数学悖论的意义以及对我的启示。
第二段:数学悖论中的“无穷大”与“无穷小”(200字)。
《阿基里斯与乌龟》悖论是一种关于无穷的悖论,它揭示了无穷分割过程中的矛盾之处。数学中的“无穷大”与“无穷小”恰恰是一个有趣的悖论。在无穷大中,存在无数个数比其他数大;而在无穷小中,存在无数个数比其他数小。然而,这些“无穷大”和“无穷小”又没有确切的定义,这就引发了对数学推理的质疑。对我而言,悖论的存在使我重新思考了数学中一些常见概念的定义。
第三段:悖论中的自指性(200字)。
另一个有趣的数学悖论是自指性。著名的赛捷悖论是一个典型的例子,其中包含了关于“说谎者”是否说真话的矛盾。这种自指性在数学中也有相应的例子,比如哥德尔的不完备定理。哥德尔证明了一些数学命题不能通过自身来证明,从而揭示了数学系统的局限性。这些悖论告诉我,数学自身的逻辑体系可能无法解决所有问题,我们需要更加谨慎地进行推理和证明。
第四段:数学悖论的教育意义(200字)。
数学悖论的存在给了我们一种思考的方式,它要求我们不仅仅接受数学的常规定义和规则,还要深入思考这些定义和规则的内在逻辑。数学悖论给了我更加前沿的数学观念,激发了我的求知欲和探索精神。我开始意识到,数学不仅仅是一系列无关的公式和定义,更是一个充满无限探索的世界。
第五段:对数学悖论的反思(200字)。
通过深入探索数学悖论,我发现数学悖论的存在其实是锻炼思维的一种方式。解决悖论问题需要我们辩证地思考,怀疑常规认知,并且保持开放的思维。这种思维方式不仅对数学学科有益,更对我们的日常生活产生了积极的影响。它培养了我的逻辑思维能力和问题解决能力,使我能够在面对复杂问题时更加从容应对。
结尾(100字):
总之,数学悖论的研究给予了我对数学的全新认识,在这个过程中我意识到数学的美妙与深度。悖论的存在让我更加谦逊地接受数学的规则,同时也激发了我对数学的热爱。数学悖论是一扇通向数学深渊的大门,当我们勇敢地敲响它时,会发现数学的边界远远超出了我们的想象。
精选数学悖论的论文(案例19篇)篇十五
数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。但这一信条后来遇到了困难。因为有些数是不可公度的。这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为第二次数学危机[2].在17世纪晚期,形成了微积分学。牛顿和莱布尼茨被公认为微积分的奠基者。他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了无穷小悖论[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成第二次数学危机.
19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。庞加莱甚至在1900年巴黎国际数学大会上宣称:现在我们可以说,完全的严格性已经达到了![5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论悖论打破了人们的上述希望,引起了关于数学基础的新争论。他把关于集合论的一个著名悖论用故事通俗地表述出来。
它和其它一些集合论悖论一样,对数学发展的影响是十分深刻、巨大的,甚至可以说是动摇了整个数学的基础,并导致了第三次数学危机。
精选数学悖论的论文(案例19篇)篇十六
摘要:本文主要研究了互联网教育教学资源与传统教学模式的有效融合,优化大学数学课堂教学效果,利用优质教学资源,结合网络平台做好大学数学课堂教学设计,改变传统教育教学模式,提高教学效率。
关键词:大学数学;互联网环境;教学研究;教学资源。
随着科技的发展,大学数学教学已逐渐打破传统的教育模式。我国各重点大学于2013年起已开始通过慕课平台进行网络在线教学,到目前为止,这种与互联网结合的教学模式也正在成为一种“新常态”。许多院校把部分教室改成了卫星和因特网连接的多媒体演播室,将网络延伸到了校园的各个角落。对于大学数学课程,如何有效地结合当前的网络资源及大学数学课程自身的特点进行合理的教学设计,从而改变以教师讲授为主到辅导为主的角色转变,提高学生自主学习能力和创新能力的是大学数学教育教学研究的一个重要课题。
一、当前大学数学教学的现状。
在互联网迅速发展的今天,大学数学课程教学并没有将教师的主体地位转变过来。由于数学本身的逻辑性和抽象性,致使教授者认为只要教师教学生才能学得懂得思想植入脑中。传统的教学模式并没有多少改变,在整个的教学过程中,缺少课堂设计,缺少与其他专业领域的贯通、缺少新度。在教学中,对概念理论讲得深,致使学生听不懂,缺少了场景的代入,先理论后应用的方式,忽略了学生思考和问题式能力的培养,缺少了搭梯子的过程,也缺少了学生再学习能力的培养。目前,大多数学校的教师利用互联网教学的技术能力还没有达到教学要求。由于高校年龄偏大的教师已经形成了自己固有的教学经验和方法,对新型的互联网技术接受慢,不善于使用和搜索迭代更新的网络教学资源。现有的考核方式仍然延续传统的考核方式,并未真正细化考核方式,主动性和积极性缺乏,缺少教学能力的创新。
二、互联网环境下大学数学教育教学研究的必要性。
(一)在互联网环境的背景下,对大学数学教学提出了更高的要求。传统教育模式已滞后于现代教育的发展。陈旧的教学手段和保守的教学方法已严重影响了学生的个性化成长和发展,学生学习的积极性性和主动性难以激发,致使整个课堂教学效率和教学质量都很难提高,浪费了时间也浪费了教学资源。因此,要求教师必须更新教育观念,将网络资源融入到教学中,促进传统教学模式和网络教学模式的有效融合。教师要立足于教育的本质,结合当前教育教学资源,不断学习,培养学生自主学习能力和创新精神,激发学生的内在学习动力。当前,互联网教学模式已改变了很多教师对网络教学的认知。不受时间和空间限制的在线学习方式也是对传统大学数学教学方式的挑战,所以,如何有效地利用当前资源,把传统教学模式与网络资源结合起来教学,有针对性、有效性地开展网络资源模式下的不同形式的教学活动也是我们需要研究的一个重要课题。
(二)互联网环境有效促进了大学数学的金课建设工作2018年11月,十一届中国大学教学论坛,吴岩司长作“建设中国金课”主题报告,阐述了什么是“水课”,什么是“金课”。如何“去水增金”,要求教育工作者要根据课程特点认真研究和思索。在互联网信息化如此飞速发展的时代,对金课建设工作提供了更多的思路和方向。大学数学可以利用互联网教学资源进行课程资源建设,充分利用好国家精品在线开放课程、国家精品视频公开课、国家精品资源共享课,实现教与学方法的创新。混合式课程资源建设,是信息化时代学校进行各项教育建设的突破点。大学数学课程作为基础学科,为后续课程起着至关重要的学科,探索其有效的教学模式是必要也是重要的。
(三)互联网环境下有效促进了教学方法的创新将互联网引入到大学数学教学中,是因材施教的一种方式。信息化时代,网络资源如此发达,教师要为学生打开一扇窗,让学生从不同的角度和方式去学习。由于在校学生数学基础和学习习惯各不相同,采用相同的方式方法教学,会导致尖子学生学习欲望没有激发起来,基础薄弱的同学又感到很吃力,不利于人才的培养,所以可以利用网络上丰富的教学资源,利用对外免费开放的重点院校的优质教学资源,丰富教学内容,丰富网络课程,根据学生个性化方式教学,激发学生学习的内在动力。
三、互联网环境下大学数学教育教学研究的措施。
(一)构建适合本校学生教育教学的网络平台时代的发展,教师的教学也要与时俱进。由传统的一根粉笔就能完成整堂课教学的时代已经落伍了,所以教师必须更新观念,将现在教育教学手段应用到教学中。以长春光华学院为例,目前我们学校大部分课程都有自己的网络教学平台。数学课程是以学习通作为辅助教学平台的,在这个平台上可以将教学大纲、教案、课件、微课视频、作业、试题等资料上传到这个平台,学生们学习起来都很方便。教师可以通过这个平台进行作业、试卷的批改,同学们的学习情况通过这个平台都有所体现。去除了保守和机械的教学策略和教学方法,将信息化教学融入到课堂教学中,实现了传统教学模式与网络化教学模式之间的紧密结合。
(二)合理地利用优质教学资源教师应该不断地学习,转变传统教学观念,根据学生的特点合理利用互联网教学资源,将重点院校精品课程的教学资源引入到教学中,可以将名校网络视频教学、名师微课、教学案例、数学实验等优质教学资源根据需求进行材料整合,引入到教学中,为学生的学习开阔视野,培养学生查资料独立学习的能力。教师也可以将网络课程中独立的知识点提炼出来做成相应的微视频或设置一些问题,为教学做补充。充分体现学生本位的教学本质,实现教师“教”是为了学生更好的“学”的目标转变。
(三)结合网络教学平台做好课堂教学设计大学数学是逻辑性、抽象性比较强的学科,怎样上好这门课程,是需要教师认真思考的问题。要想上好这门课程即要有课程的整体设计,又要根据每堂课的教学内容做精确的教学设计。教师要依据教学大纲要求明确教学目标,同时对教学内容和学情进行分析,给出数学课堂教学的宏观设计。整个教学设计过程可以分为三个教学阶段:课前、课中、课后。课前为预习阶段,教师提前将教学课件、教学视频、在线测试上传到构建的网络平台,供学生们提前学习;课中为新课讲解阶段,教师将重点、难点等教学任务传授给学生,并进行问题讨论、评价;课后:回顾学习内容,进行学习反思、讨论交流。同时,教师每次课一定要进行教学反思,将教学中的问题记录下来,并对教学中的不足之处及时调整。教师还要上好每一堂课,每一堂课都要有微观的教学设计,根据本次课的教学内容,要给学生提供学生更容易接受的教学资源及视频,以三本学校学生为例,学生入学时数学基础比较薄弱,教师在选择视频资源时一定要让学生能容易接受,理论强的课程对于学习能力强并感兴趣的学生可以推荐学习。在课堂教学中,教师要根据本次课的教学内容提出相应的问题,最好与生活实际相关的例子,让同学们觉得数学就在身边,也可引入一些视频,让同学们觉得数学课堂不是枯燥的,从实际生活上升到理论的学习更能让学生们理解和接受,同时也达到创新能力培养的过程。在教学中还可以将好的数学实验演示视频给学生们观赏,让学生们感受到数学的魅力。课后也要留好学生讨论的问题,让学生能在课下也有再学习的过程。
(四)结合网络学习,做好评价体系做好与网络资源结合的教学模式,合理科学的评价体系也是至关重要的。要将学生的在线网络学习数据做为平时成绩的一部分,调动学生主动学习、自主学习的积极性,同时培养学生的良好学习习惯。
四、互联网环境下大学数学教育教学研究的意义。
互联网模式下的大学数学教育教学改变了传统教育模式,教师可以有效地利用网络优质教育资源,丰富课堂教学内容,活跃课堂氛围,改进教学内容和教学设计模式,以设计者的身份与学生平等对话,共同发展。同时拓宽了学生的视野,激发了学生学习的积极性和主动性,体现了以学生为中心的教育理念和教育本质。互联网模式下的大学数学教育教学研究优化了大学数学课堂教学效果,提高了大学数学教学效率。互联网模式下的教学推动了课程改革及素质教育的车轮,创造性地开辟了教学手段和教学策略之路,宏观角度辅助教师的教学及学校的发展,为学生营造了自由开放的教学氛围和学习氛围,鼓励了学生多边学习,实现自身的价值。
参考文献:。
[1]袭杨,于辉,张丽,宋千红,田宏.基于mooc构建大学数学混合式教学模式的研究[j].黑龙江科技信息,2016(33):140.
[3]杜秋霞.浅谈混合式教学在高等数学教学改革中的应用[j].发明与创新(职业教育),2020(07):68.
数学。
将本文的word文档下载到电脑,方便收藏和打印。
精选数学悖论的论文(案例19篇)篇十七
有一天,森林里面来了一群特殊的“客人”。它们长相很特别,动物们都很奇怪,要求他们一一介绍自己。第一个走出来一个瘦子,它说:“我是1,像支铅笔细又长”。接着又走出一个说:“我是2,像只小鸭水上飘。”第三个说“我是3,像只耳朵听声音。”“我是4,像面小旗随风飘。”“我是5,像支衣钩挂衣帽。”“我是6,像棵豆芽咧嘴笑。”“我是7,像把镰刀割青草。”“我是8,像支麻花拧一道。”“我是9,像把勺子能盛饭。”“我是0,像个鸡蛋做蛋糕。”他们刚介绍完了,小鹿又问道”你们中间谁最大?谁最小呢?”9站出来,很骄傲地说“我是9,我最大。”0耷拉着脑袋说“我最小。”“对,就是这个表示什么都没有的0。”9用冷淡的口气说道。9刚说完,动物们和它的数字兄弟都笑了。0更加不好意思了,动物们看到0这么没有用,都不愿意和它一起玩。它们在一起唱呀!跳呀!非常开心。突然一只大象在里面挣扎了很久,用了很大的力气总想爬上来,它爬呀爬累得满头大汗,腿也挂破了,鲜血直流。可是,怎么也爬不上来,它只好在里面大声“救命呀!救命呀!”动物们听到了,就纷纷跑到洞口边,想把大象救出来。数字1到9也来帮忙了。他们组成最大的数字987654321,显示了最大的力量,费了九牛二虎之力,也没有把大象拉上来。这个时候,只听见后面有一个微弱的声音说道“我也来试试。”它们一看是0,就勉强的同意它也来帮忙。它们重新组成数字9876543210,它们的力量一下子就增大10倍。哈哈……,一下子就把大象拉上来了。
动物们都很感谢数字兄弟,同时也为冷落了0感到愧疚,它们都来到0的身边,愿意和0做朋友。数字兄弟也开始重视0了,愿意和它一起玩耍。从此以后,0再也不自卑了,它觉得自己还是很有用的。
美丽的植树图案。
很久很久以前,阿拉伯数字王国的国王过20岁生日,罗马数字王国派人送来了20棵珍贵的树,作为生日礼物。阿拉伯数啊。“20”大臣张榜招贤,凡是能巧妙地栽这20棵树的人将有重赏。可是,谁也设计不出来。“20”大臣日夜思索,翻了大量的资料,又用石子进行了一次次的试验。他画了成千成万个图样。
画着,试着,忽然,他眼睛一亮,看到了一张极其美妙的图案。“20”大臣立即把图案奉献给国王。国王见了非常高兴,“20”大臣指着图案对国王说:“陛下,您看,图中所栽的树不论横数、竖数或斜数,每行都是4棵,这样最多18行。”国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!”。我要重重地赏您!”国王赞叹不止,说:“这样美丽奇妙的植树图案,我在任何公园都没有看见过,简直太美妙了。我要重重地赏您!”“对,这是一位名叫山姆·劳埃德的数学家发明和设计的,我只是把他设计的图案用到植树问题上来。”“20”大臣据实说。“好,好,你能用上这个图案,也是有功的。”说着,国王宣布了对“20”大臣的奖赏,并将这个图案命名为“20图案”,是世界上最美丽的植树图案。
国王立即派人按照“20图案”把20棵树栽在宫廷的花园里。从此,这美丽的植树图案就一直流传至今。
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的'钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
趣味野猪上当。
瘸腿狐狸卖西瓜赔了本,没钱买吃的,饿得肚子“咕咕”叫,走路直打晃。
老牛走过来,问:“狐狸,你这是怎么啦?”这是怎么啦?”
狐狸看了老牛一眼说:“饿的,两三天没正经吃东西啦!”
老牛一本正经地说:“要想有饭吃,就要参加劳动!”说完老牛干活去了。
“哼,劳动?劳动多累呀!”狐狸眼珠一转说,“嗯,我有个好主意。”
狐狸一瘸一拐地跑到野猪家。野猪家有个大筐,里面装着许多玉米,筐子上面盖着厚布。狐狸说:“野猪老兄,听说这筐里有许多玉米,能告诉我一共有多少吗?”
“保密!”野猪没好气地答了一声。
“哈哈,在我聪明的狐狸面前,不可能有任何秘密!”狐狸很有把握地说,“我出道题,你算算,我不但能说出你筐里有多少玉米,连你有多大岁数都能知道。”
“真的!”野猪觉得不可思议。
狐狸咳嗽了两声,说:“把你筐子里的玉米数乘以2,加上5,把所得的数再乘上50,加上你的年龄,再减去250,把得数告诉我。”
野猪趴在地上算了半天,最后说:“得1506。”
狐狸立刻说:“你筐里有15个玉米,你今年6岁。”
野猪一摸前脑想,对,筐里的玉米数是15个。野猪一摸后脑勺想,今年自己真是6岁。
“神啦!”野猪从心里佩服狐狸。他问狐狸:“你怎么知道的?”
“算的呀!你算得结果是1506。最左边的两位数15,就是玉米数;最右边的一位数6,就是你的年龄。”
“你太伟大啦!”野猪抱着狐狸亲了一下。
“伟大不伟大并不重要,重要的是给我弄顿饭吃,要有酒有肉啊!”狐狸显得十分得意。
不一会儿,野猪给狐狸端上来红烧兔子肉、清蒸鸡、煮老玉米,外加两瓶好酒。狐狸猛吃猛喝,临走还拿走4个玉米棒。
野猪到处宣传,说瘸腿狐狸神机妙算。小猴灵灵告诉野猪说,你上了狐狸的当啦!野猪不信。
小猴说:“你看算式(2×15+5)×50+6-250=15×100+250+6-250=1500+6=1506。玉米数15是你自己写上去的,乘以100后变成了千位和百位上的数,而年龄6也是你自己写上去的,它变成了个位数。这样一做,把两个数分离开了,一眼就可清楚。”
“好个瘸腿狐狸!”野猪快速冲了出去,追上瘸腿狐狸,夺过玉米,用每根玉米棒在狐狸头上都狠敲了一下。这下可好,瘸腿狐狸头上添了4个大包!
小松鼠要过冬了。
冬天到了,小松鼠要准备过冬的粮食了。
有一天小松鼠背着一个大袋子,来到森林里,对松树爷爷说:请吧你的松果送给我,好吗?松树爷爷很大方,说:你想要多少摘多少。小松鼠很高兴,它一边摘一边唱歌,不一会袋子装满了。松树爷爷问:你摘了多少个?小松鼠说:哎呀,我忘了!松树爷爷笑着说“我长了16个松果,现在还有9个,你能算出摘了多少个,就让你背走。”小松树急了,不会算,怎么办呢?要是松树爷爷不让它背走,那冬天吃什么呢?我来帮它好了。
数学课上,老师讲过:知道总数,求部分数,就是从总数里去掉知道的一个部分数,就得另一部分数,用减法计算。我很快就算出来了,小松鼠摘了16-9=7(个)。
二年级小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜场卖鱼。
小熊在回家的路上,边走边想:我5斤鱼按4元1斤应卖20元,可怎么现在只卖了8元……小熊怎么也理不出头绪来。
你知道这是怎么一回事吗?
狐狸卖蛋。
西瓜卖不成了。瘸腿狐狸改行卖鸡蛋了。瘸腿狐狸守着好多箱鸡蛋,大声吆喝:“买鸡蛋呀!新鲜鸡蛋!多买便宜啦!”突然,传来低低的哭泣声。瘸腿狐狸循声望去,见到一只大公鸡扶着一只哭泣的母鸡朝这边走来。
狐狸赶紧打招呼:“二位买点新鲜鸡蛋吧!”
母鸡听说“新鲜鸡蛋”几个字,突然放声大哭。母鸡这么一哭,把瘸腿狐狸弄糊涂了。
狐狸满脸不高兴。他说:“今天我第一天卖鸡蛋,你就在我摊前又哭又闹,真晦气!”
大公鸡赶紧解释说:“我妻子前几天产了一窝蛋,不留神,被小偷偷走了,她非常伤心。”
听说“偷”字,狐狸一怔。他急忙解释说:“人家常说狐狸偷鸡,可没人说狐狸偷蛋的,这蛋是我买来的,可不是偷你们的!”
你买几个回去孵,保证你子孙满堂。”
听了狐狸这么一说,母鸡立即破涕为笑,当即买了10个鸡蛋欢天喜地的回窝孵蛋。
母鸡刚走,狐狸“噗哧”一声笑了。他奸笑着说:“我这些鸡蛋都是从母鸡场买来的,这母鸡场一只公鸡都没有,这鸡蛋根本就孵不出小鸡!”
母鸡回去孵蛋,一连孵了许多天,鸡蛋连一点动静也没有。又过几天,鸡蛋开始出臭味了,母鸡才知道上了狐狸的当。公鸡和母鸡一起找狐狸算帐!
狐狸死不承认,可是公鸡和母鸡就是不答应。狐狸眉头一皱,计上心来。狐狸说:“这样吧!我愿意把这1000个鸡蛋都给你,作为赔偿。只是有个条件。”
公鸡问:“什么条件?”
狐狸说:“这1000个鸡蛋,你们要分5次拿走。每次拿走的鸡蛋数都是一个由8组成的数。8多吉利,8就是发嘛!发财呀!”
公鸡和母鸡,你看看我,我看看你,谁也不会算。突然,“叭嗒”一响,从树上扔下一个小纸团,一只猴子在树上一闪就没了。公鸡拾起纸团一看,立即高叫一声,对狐狸说:“你先给我8个鸡蛋。”狐狸照办;“你再给我88个鸡蛋。”狐狸照办;“你再给我888个鸡蛋,几次啦?”
狐狸说:“3次啦!”
母鸡过来说:“剩下两次,该我啦!你给我8个鸡蛋,再给我8个鸡蛋。”
狐狸眼睛都红了,他作了个加法:8+88+888+8+8=1000。狐狸大叫一声,昏倒在地上。
精选数学悖论的论文(案例19篇)篇十八
有一只失群的孤雁,在天空飞着。远处飞来一群大雁,孤雁迎上去说:“朋友们好。你们一共有多少只“呀?”前面的一只老雁答道:“你看,要是再有我们这样多的一样,再加上一群的一半,再加上一群的四分之一,再加上你,那么,就刚好是一百只。”
孤雁一边继续向前飞行,一边思考着,它究竟遇见了多少同伴呢?想啊,想啊,怎么也解答不了这个问题。这时候,它看见一只仙鹤歇在池塘边,它高兴极了。仙鹤在鸟类中享有“数学家”的称号,一定能帮助解决这个问题。大雁飞到仙鹤跟前,讲了刚才经历的事情。
仙鹤听完后,慢慢地向前走了几步,然后回过头来对大雁说:“试试看。只要细心,会搞清楚的。”
仙鹤弯下脖子,用嘴在地上画了一条线,在旁边又画了一条同样长的线,然后画长度为一半的一条线,再画四分之一长的一条线,最后点了一点如图:“现在你来看,明白了吗?”仙鹤抬起头问道。“还是不明白。”大雁看了图,沮丧地回答。
仙鹤说:“好,我来讲给你听。一条线,又一条线,表示一群大雁,再加一群;一半的那条线表示一群大雁的一半,四分之一条线表示四分之一群大雁,最后的一小点,就是你。明白吗?”
“明白啦,这么多就是一百只。”大雁高兴地说道。“要是没有你,那是多少只?”
“九十九只。”
仙鹤用脚把一点抹掉,说:“现在,让我们来算一算,四分之一群加二分之一群的和,是四分之几群?”大雁看着地上的`图,答道:“是四分之三群。”“好”。仙鹤夸奖大雁,“那么,整群是多少个四分之一群?”“当然是四个。”大雁回答。
“对。可是领头的大雁说的是一群加一群,再加半群,再加四分之一群,总数是九十九。所以,要是全部化成四分之一,那总共有多少个四分之一?”大雁想了想,回答道:“一群是四个四分之一群;再加一群,又是四个四分之一群;再加半群,是两个四分之一群;再加上一个四分之一群,总共是十一个四分之一群。”
“对啦。”仙鹤说,“现在请你说说,这个题的答案是多少?”
“我知道了,”大雁说,“十一个四分之一群等于九十九只大雁,一个四分之一群有九只大雁。”
“那么,一群大雁..”
“一群包含四个四分之一群,我遇见了三十六只大雁。”大雁高兴地大声说。
“问题的答案正是这样。”仙鹤郑重地说。
精选数学悖论的论文(案例19篇)篇十九
悖论问题是困扰人类心智千年的难题。有的哲学家甚至认为整个一部哲学史可以看作是与各种悖论做斗争的历史。在为数众多的悖论当中最著名当数说谎者悖论,这不仅因为它具有十分悠久的历史,更是因为该悖论以最为简单的形式告诉人们,通常对“真”这一我们日常生活中普遍使用的概念的直觉理解是包含矛盾的。考虑语句(l):l是假的。那么l这句话是真的还是假的呢?如果l为真,那么它说的是自己为假,因而它为假;如果l为假,那么说它自身为假是假的,因此它又为真。这显然是矛盾的,但我们又找不出问题究竟出在哪里。语句l被称为“说谎者语句”,“说谎者悖论”这一名称由此而来。
对说谎者悖论的探讨已经持续了两千多年,但遗憾的是至今仍没有就该悖论的解决意见达成一致。值得注意的是进入20世纪中后期以来,一类型新的悖论走进了研究者们的视线,并逐渐得到了逻辑学家与哲学家们的重视,这就是知道者悖论。在持续多年的研究过程中,该悖论多层面的理论意义与学术价值逐步得以彰显。与说谎者悖论类似,知道者悖论当中也涉及类似的语句,即所谓知道者语句(k):认知主体i知道k为假,该悖论由此而得名。然而,许多学者对“知道者悖论”(knowerparadox)这一概念所指称的对象却并不清楚,甚至与其简化形式或者其前身―――绞刑悖论―――相混淆。另外,在道义逻辑中也有所谓知道者悖论。因此,澄清“知道者悖论”这一概念就显得非常必要。
知道者悖论的起源可以追溯到20世纪40年代在欧洲民间流传的“突然演习问题”。在持续多年的研究中,“突然演习问题”逐渐演变为一个著名的哲学问题―――“绞刑悖论”。也就是说,知道者悖论来源于其前身―――绞刑悖论,但与该前身却并不完全相同。
绞刑悖论描述的是如下场景:法官向一名罪犯宣判,他被判处绞刑,而且该罪犯将在从宣判之日的第二天起的10天中的某一天被执行绞刑,但这次绞刑是一次令罪犯出乎意料的绞刑,意思是说,在执行绞刑的前一天晚上,罪犯不会知道绞刑将在第二天执行。这看似一则很正常的宣判,然而当这名聪明的罪犯听到该宣判时,心中一阵窃喜:按照该宣判,自己不会被执行绞刑。为什么呢?该罪犯的如意算盘是这样的:根据法官的宣判,绞刑不可能在这10天中的最后一天执行,这是因为如果在最后一天执行,那么由于前9天都没有执行绞刑,所以在倒数第二天(也就是第9天)晚上,我就会知道第二天(也就是最后一天)将执行绞刑,但这不满足法官所宣判的这次绞刑的“意外性”,因而绞刑不可能在最后一天执行。绞刑也不可能在倒数第二天执行,因为如果在倒数第二天执行,那么由于前8天都没有执行绞刑,而前面的推理已经排除了绞刑在最后一天执行的可能性,所以在倒数第三天(也就是第8天)晚上,我就会知道第二天(也就是倒数第二天)将执行绞刑,这再一次不满足法官所宣判的绞刑的“意外性”,因而绞刑不可能在倒数第二天执行。按照同样的思路进行推理,可以依次排除绞刑在倒数第三天、倒数第四天……执行。于是该罪犯断定法官的宣判是不可实现的。然而,法官就在接下来的第四天突然来到该罪犯面前对他执行了绞刑,这大大出乎该罪犯的意料,从而不折不扣地实现了之前的宣判。可悲的是,该罪犯到死都没有明白为什么自己无懈可击的推理当中却包含着矛盾。
前面,我们以非形式的方式叙述了绞刑悖论。尽管该悖论还有诸多实质相同的其他版本,比如克里普克(s.akripke)[2]宁愿称之为“意外考试悖论”,但我们还是遵循蒯因(w.v.quine)的称谓将之称为“绞刑悖论”。经过奥康纳(d.o’con-nor)、斯克利文(m.scriven)、蒯因、沙乌(r.shaw)[、蒙塔古(r.montague)和卡普兰(d.kap-lan)等哲学家与逻辑学家的深入研究与整理,前述非形式叙述的绞刑悖论已经发展成一个关于“知识”概念的严格的自指悖论。
由蒙塔古和卡普兰在其1960年发表的文章中给出的,他们认为该悖论的出现必将会引出哲学认识论上的某些新探讨,因此他们在给出这种刻画之后,对该问题进行了进一步深入的思考。蒙塔古和卡普兰发现,可以考虑一个从该悖论引申出来的更简单的结果,这样就会使问题变得更加尖锐。如前所述从前述非形式叙述不难看出,绞刑悖论中绞刑不可能执行的`推导与天数无关。因此,在这里为简洁明了起见,只考虑有两个可选择日子的情形,这不会影响问题的实质。
在多年的研究当中,知道者悖论有时候也以它的简化形式出现。从以上知道者悖论的严格形式刻画的过程中不难看出,哥德尔自指定理起到了至关重要的作用,因为该定理使得法官的宣判这一自指语句经符号表达之后成为形式算术系统的一条定理。稍加分析可知,由哥德尔自指定理所得,与前述(z)类似的a**堞kzp(「a**?)同样是皮亚诺算术系统或者鲁滨逊算术系统的定理。在以上解释之下,语句a**的意思是:认知主体p不知道a**。相比之下,语句a**在结构上比前面的语句a*更接近于“说谎者语句”l:l堞t(「l?)。如果把知道者语句构造为a**,则稍加修改认知规则以及推导建构所依赖的形式系统,就可以构造出知道者悖论的另一个简化版本(相应地,前面提到的可以称之为知道者悖论的经典版本)。
值得注意的是,在相关文献中还有一类所谓的“知道者悖论”―――“道义逻辑中的知道者悖论”(theparadoxknowerindeonticlogic)。所谓“道义逻辑”(denoticlogic)也称规范逻辑,是研究“应该”“允许”“禁止”等概念的广义模态逻辑的分支之一。
五、结论。
知道者悖论是关于“知道”的严格意义的逻辑悖论。所谓严格意义的逻辑悖论“指谓这样一种理论事实或状况,在某些公认正确的背景知识之下,可以合乎逻辑地建立两个矛盾语句相互推出的矛盾等价式”。由于该悖论以最为简单的形式告诉人们,通常对“知道”这一概念的理解是包含矛盾的,所以知道者悖论得到了来自任何关注知识概念的学科的广泛重视。尤其是进入21世纪以来,知道者悖论研究取得了迅速发展。由以上分析不难看出,因而与知道者悖论及其简化形式与前身有着十分密切的联系。但很显然,两者之间也存在着本质上的不同:道义逻辑中的知道者悖论还本质地涉及到了基本道义规则,因而是一个比知道者悖论更为复杂的问题。综上所述,在不同的情境当中,由于背景知识的不同,“知道者悖论”(knowerparadox)这一概念与4个悖论相关。因此,对知道者悖论进行研究,首先应该明确这4个悖论之间的联系与区别。