在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
分数的基本性质教学改进策略篇一
分数的基本性质是在学生在学习了分数意义的基础上,联系学生已学的商不变性质和分数与除法的关系进行教学的,是约分和通分的基础。我本着让学生实践数学、体验数学,以主体性教育理念为指导,充分尊重学生在课堂上的主体地位和学生参与新知的探索过程,培养学生自主学习和发展数学思维。
分数的基本性质教学改进策略篇二
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。用故事情景引入,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。最后运用知识,深化对分数的基本性质认识,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
本节课教学设计突出的特点是学法的设计。从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习设计的。具体表现在:
1、学生在操作中大胆猜想。
注重让学生自主探索、合作交流。设计者只是提供了一个材料,引导学生充分地观察、讨论、交流,而不是填鸭式地讲解,使学生在探索研究的过程中,发现分数的基本性质,并且注重联系旧知,完善学生认知结构。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发他们主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性。在较为宽泛的时空中,鼓励学生用自己的方式来证明自己猜想结论的正确性,凸显出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学都强调学生自主参与,使学生获得成功的体验。
3、让学生在分层练习中巩固深化。
练习力求紧扣重点,做到新颖、多样、层次分明,有坡度,加深了学生对分数的基本性质的认识,激发了学习的兴趣,活跃了课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
分数的基本性质教学改进策略篇三
本周上了一节数学课《分数基本性质》。针对课前的精心准备、课堂教学和课后的自我反思,收益很大。特反思如下。
在备课时,我就深知分数基本性质和商不变的规律有着密切的联系。所以在上课伊始,我就让学生复习商不变的规律,在课件中展示,并由学生齐读。为了更好的达到温习旧知的目的,我又设计了两道习题,学生在此基础上加深了商不变的规律的印象,为引新起到了很好地铺垫和桥梁的作用。
本节课创设了一个故事情境:阿凡提在一次施行途中,遇到了一件事。一父亲把土地分给三个儿子。大儿子分到田地的1/3,二儿子分到了田地的2/6,三儿子分到了田地的3/9。大儿子和二儿子嫌少,同父亲争执了起来。阿凡提听后大笑,说了几句话,他们马上停止了争执。随后问:“阿凡提大笑?他说了些什么?” 引生猜测。学生在新奇有趣的故事情境中充满了好奇心,很快将思维转到比较1/3, 2/6, 3/9的大小上来。教师创设悬念:学完了本节课,你就知道了。学生抱着解决问题的态度学习新知识,收到了很好的效果。
教师让学生用一个长方形纸,对折再对折,即平均分成4份,给其中的3份涂色,并用分数表示出来。学生在动手的同时也在动脑,得出分数3/4,因势利导,在两次对折的基础上再对折,那么阴影部分的面积是多少?(6/8)再次对折呢?(12/16)……挥手一指:长方形的纸有没有变化?(没有)阴影部分的面积有没有变化?(没有)那么得到了什么结论?学生很容易得出:3/4=6/8=12/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时扩大(或缩小)相同的倍数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
在设计练习的过程中,联系生活实际,我设计了判断题、填空题等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。
最后,教师问:通过本节课的学习,你学习了哪些知识,有哪些收获?在学生回答的过程中师生进行补充,学生更加深刻地认识了分数的基本性质,为今后的学习应用打下坚实的基础。
分数的基本性质教学改进策略篇四
“分数的基本性质”是人教版小学数学五年级下册的内容,在小学数学学习中有着承前启后、举足轻重的作用。它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。基于这部分知识是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。所以这节课我采用“猜想——验证——反思”的一种研究性学习方式。
学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始我设计了两组练习题,一组是利用除法中商不变的性质来解决,一组是利用分数与除法的关系来解决。为新知识的学习奠定基础。同时也在头脑中形成表象,便于学生学习下面的分数的基本性质。
在教学分数基本性质时,并没有把这个性质灌输给学生,而是让学生在自主探究的过程中自己感悟。我先是让学生根据大屏幕上的涂色部分说出用哪个分数来表示,又让观察两个分数的特点,学生自然而然的得出两个分数相等。然后利用小组合作学习,在这些相等的分数中猜测,寻找分子、分母的变化规律,初步得出分数的基本性质。接着我又利用图形与学生一起验证他们所得出结论。这样的活动使得学生始终处于积极思考的状态,不但保持学习的积极性,而且增强了学生学习的自信心,使他们感到我会学,我能行。
当然,本节课出现的问题也很多:首先,在验证、交流环节学生们参与率并不高,在交流时也不主动,很多学生还停留在一知半解的状态。其次,猜想的验证过程过于单一,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。第三、在小组合作交流方面:本节课的设计中有两处合作交流:一个是在验证猜想时合作。另一个是在发现规律时合作探究,交流沟通。但学生的交流流于形式,没有起到真正的知识碰撞的效果,在今后的教学中对这个问题有待进一步的改进。第四,就像教研员张老师所说,我还是不够充分地信任孩子们,还是我说的太多,而学生说的少,放手的力度不够。
这节课上完后,我感触颇多,教学真的是一门永远留有遗憾的艺术,在以后的教学中,我一定会追求更务实的课堂。从学生的实际出发,因地制宜,提高自己的课堂驾驭能力。
分数的基本性质教学改进策略篇五
《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的'帮忙,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分资料我是这样设计教学的:
1、学习分数的基本性质我利用了商不变的性质进行正迁移,所以我在开课伊始板书:"分数与除法”有什么关系“根据除法和分数的关系,将这个除法算式写成分数形式,“根据商不变的性质我们能够把一个除法算式变成很多除法算式,那一个分数能不能也变出很多分数呢?”帮忙学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。
2、在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了小组合作学习提示,让学生首先猜测分数是否也有与除法同样的性质。之后充分利用直观手段,设计了折纸涂色的操作活动,经过让学生动手操作来发现三个分数之间的相等关系,之后引导学生一齐探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮忙学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后找出规律中的关键词“同时”、“相同的数”,再提出为什么那里的相同的数不能为零,并经过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自我的语言叙述解决问题的过程,体现了对学生观察本事、动手操作本事、逻辑思维本事和抽象概括本事的培养。
1、随着知识点的深入,很多孩子开始呈现课堂吃力现象,小组合作中体现不出自我的认识或者想法,仅有听得份,困惑是怎样解决他们的困难,让他们紧跟我们学习的步伐。
2、今后小组合作提示要照顾差生的提高,创造学习数学的兴趣和耐心。
分数的基本性质教学改进策略篇六
《分数的基本性质》是人教版小学数学五年级下册的资料,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮忙,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用"猜想和验证"方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分资料我是这样设计教学的:
一、迁移引入,沟通新旧知识的联系。
学习分数的基本性质能够利用商不变的性质进行正迁移,所以我在复习环节时出示:"12÷4=3120÷40=31200÷400=3,问:观察这三道算式,你回忆起以前学过的什么规律根据除法和分数的关系,猜猜看分数也有这样的规律吗帮忙学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。
二、用故事情景引入,增强解决问题的现实性。
教学一开始,就以一段故事《三个和尚分饼》引入课题,这样不仅仅激发了学生的学习兴趣,更调动了学生的求知欲望,充分运用了猜测和情景引入等方式,吸引学生主动参与到对新知识的探究过程中,把抽象的分数基本性质具体化了。然后,我抓住分数基本性质的本质属性,透过让学生动手操作来发现三个分数之间的相等关系,之后引导学生一齐探索这三个分数之间存在的规律,从而把具体的知识条理化,归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后再提出为什么那里的相同数不能为零,并透过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察潜力、动手操作潜力、逻辑思维潜力和抽象概括潜力的培养。
三、运用知识,解决实际问题。
先进行基本练习,深化对分数的基本性质认识,透过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数你能写几个写的完吗在写的时候,你是怎样想的1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4…的时候,b分别=a和b为什么有怎样的关系为什么有这样的关系呢并培养学生运用所学的知识解决实际问题的潜力。本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子,如果能有把这两个规律之间的转化采用举例、填空的形式,能给学生以直观的体验,胜过用语言的描述。
分数的基本性质教学改进策略篇七
《分数的基本性质》这节课我引导用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。这节课是在学生已掌握了商不变的性质之后,并在已有知识、数学活动经验的基础上进行的,我是这样设计教学的:
1、通过羊村长分饼的故事,创设了实用的生活情境,引导学生发现、提出问题,充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自己的猜想。通过动手操作三张正方形的纸张,把它们平均折成2份、4份、8份,取其中得1份、2份、4份,图上颜色,并用分数表示,来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。
2、商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质总结概括分数的性质,遗憾的是没能处理好商不变的性质与新课的关系,这部分的内容反而变成了累赘,占用了课堂宝贵的时间,打乱了整个教学的严谨性。
3、运用知识,解决实际问题。为了把知识转化为能力,练习题的设计注意了针对性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。有效突破了难点。
本节课出现的不足是:创设了故事情境,出现了三个分数,但是没有利用好。出现了顾此失彼的现象;猜想的验证过程过于单一,只采用了折正方形纸的方法来验证,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折长方形、分苹果图等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。在形成性质过程中,对分数基本性质与分数除法的关系,商不变的性质等的整合没处理好,导致了教学不严谨,课堂出现了师多说,生少练的现象。
在今后的教学中,需给学生提供思维的活动空间,精心备课,备教材,备学生,立足学生实际,进一步提高教学实效。
分数的基本性质教学改进策略篇八
分数的基本性质在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。放手让学生操作、观察、比较,验证自己的猜想。通过动手操作三张长方形得纸条,把它们平均折成2份、4份、8份,取其中得1份、2份、4份,图上颜色,并用分数表示,来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习题的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。学完例2以后,马上结合知识点进行反馈练习,加深对这个过程的理解。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计是本节课的亮点,在学生根据三个分数归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外。突破难点。
本节课出现的不足是:
(1)猜想的验证过程过于单一,只采用了折长方形纸条的方法来验证,完全可以放手让学生通过各种方法来验证,如画线段图、折圆,折正方形、分苹果图等方法来进行,这样尊重了学生的意愿,也扩大了探究的范围,拓展了学生学习的空间。
(2)老师还是有牵着学生走的现象。
(3)教师语言速度比较快,与平时说话有很大的关系,今后要及时改正,放慢语速。
(4)在以后的教学中应不断改进教法,向有经验教师学习,加强评价语言的运用,提高驾驭课堂的能力。
分数的基本性质教学改进策略篇九
“分数的基本性质”是人教版小学数学五年级下册的内容,它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,对这部分内容我是这样设计教学的:
1、用故事情景引入,用猜测的方式,激发学生的学习兴趣,增强解决问题的现实性。采用学生自己亲自观察、操作,再分析怎样做的方式,把学生推上学习的主体地位,放手让学生自己去解决问题。
2、步步逼近,主动探究。用逐步向学习目标逼近的方式学习数学,在探索规律的过程中,学生不能一次完整地归纳出分数的基本性质,只能用逐步向目标逼近的方式,先引导学生概括出例题的规律,再将这个规律与书上的结论进行比较,通过比较学生可以发现归纳的规律并不精确,然后重点讨论为什么要“0除外”,使学生全面、准确地掌握分数的基本性质。接下来再沟通商不变的规律与分数的基本性质的内在联系,加深学生对分数的基本性质的理解。
3、前后呼应,体验成功。
在探究过程中充分发挥学生学习的主体作用,用实验、说解问题的过程、对比归纳规律等方式,让学生参与学习的全过程,在掌握所学知识的同时获得成功体验。应用拓展时又利用判断等式来巩固知识。学生掌握知识的情况比较理想。
整节课我设计了四个教学环节,猜想与验证,归纳再验证,巩固与应用,拓展与延伸。如从课的开始,就让学生从阿凡堤的笑中进行猜测,其实这三个分数的大小相等。让学生运用自己原有的知识经验进行验证,得出规律后并没有满足,而是继续利用“性质”的应用再次检验结果的正确性。通过学生不断猜想,不断验证,再猜想,验证,学生的兴趣比较高,他们希望能向别人证明自己的猜想,这猜想一旦被别人认可,学生的自信心就会大增,我想,长此以往,学生慢慢就会从“能学习”转化为“会学习了”。这节新授课的设计,目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
以前我曾经听过也上过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥,基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
本节课出现的问题也很多:
首先,在验证、交流环节学生们参与率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。
其次,验证的方法也不多。学生们只应用了商不变的性质,分数与除法的关系,以及分子与分母的倍数关系,最直观最重要的用线段与实物来验证的同学很少。由于是时间关系,我没有让学生在这方面有过多的停留,显然,验证得还不够透彻,部分同学还有疑虑。以后如果再上这节课,我想在这个环节上作一些处理。就是让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜想是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。
第三,在巩固练习环节上,学生们练习的密度还不够,毕竟回答问题的同学在少数。