在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
圆柱表面积课后反思不足之处篇一
“圆柱的表面积”一课,教材先提出“圆柱的表面积指的是什么”,让学生在交流中逐步理解圆柱表面积的含义。然后安排了让学生将圆柱模型展开,看一看展开的面是由哪几部分组成的,把它们标出来等探究活动,目的是让学生经历实验研究,建立数学模型的抽象思维过程,发现圆柱的表面积与已经学过的图形面积之间的联系,从而得到圆柱的表面积的计算方法。
对于圆柱表面积的知识,学生不是一张“白纸”。有的学生可能已经从数学课本上了解了一些,加之在“圆柱的认识”中也有了一些体验和感悟,个别学生在课外学习中已经知道一些圆柱表面积的计算方法。但是即使学生知道方法,却不一定真正理解。所以,教学中教师注重通过出示学习材料、提问、让学生操作和演示等活动,帮助学生获得圆柱的表面积与圆面积、长方形面积之间的联系。对于圆柱体侧面积计算公式的推导,要遵循主体性原则,让学生动手操作,在观察、推理中促进知识的迁移,使学生掌握圆柱体侧面积的计算原理和方法,即通过“等积变形”将圆柱的侧面转化为长方形。同时在教学过程中要尊重学生的知识基础和已有的生活经验,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程,并根据课堂教学的实际调整教学思路。
我认为。数学建模活动要有利于学生的数学理解。数学教学活动要促使学生“真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验”。因此,数学教学活动的设计要有利于学生理解数学。本节课的教学,要让学生明确圆柱表面积的含义,知道表面积的计算方法,会用表面积的计算公式进行计算,更重要的是要引导学生经历探究圆柱表面积计算公式的过程,遵循由“观察物体——建立表象——抽象图形——建立模型(空间观念)”的认知规律,通过实践操作、讨论、交流等活动,促进学生对数学的理解。课开始,教师从数学知识的内在联系入手,提出两个综合性问题,唤醒学生对有关表面积计算的回忆,这是顺利开展数学活动、理解圆柱体表面积的重要基础。接着提出:“圆柱的表面积指的又是什么?”为后来的操作和丰富直观表象起到了导向作用,从而为学生经历建模过程,达成数学理解奠定了坚实的基础。
本节课我安排了自己制作、剪开、展开侧面、观察图形等活动。通过实践操作,使学生领悟长方形的长相当于圆柱底面的周长,长方形的宽相当于圆柱的高,从而逐步归纳出圆柱的表面积的计算公式。由此可见,借助实践操作活动建立丰富的直观表象,可以为学生的数学理解提供支撑,更重要的是在操作过程中学生积累了数学活动经验,奠定了良好的数学理解基础。
我给学生留出了较为充裕的思考与实践操作的时间,在得出结果后,教师尽可能全面把握学生的情况,及时捕捉课堂资源,提出:“说一说,在计算圆柱的表面积时,应注意些什么?”组织学生进行交流,在交流和讨论中,形成师生、生生之间的有效互动,促进学生将实际问题抽象成数学模型并进行解释与应用。
在练习中,我首先出示一组基本练习题,使学生熟练掌握求一般的圆柱体表面积的方法,加深对圆柱体表面积公式内涵的理解和把握。接着进一步联系生活实际提出问题让学生解决,体验运用知识成功解决问题的愉悦。最后,通过让学生再次回想计算圆柱体表面积的公式,进而加深对新知识的掌握。
圆柱表面积课后反思不足之处篇二
苏霍姆林斯基曾指出:“在人们内心深处都有一种根深蒂固的需要,这就希望自己是一个发现者。研究者,在儿童的精神世界中,这种需要特别强烈。”那么在实际教学中,如何给学生提供一个发现、研究、探索的机会就显得尤为重要。这就必须在新的教学理念指导下,把生动的课堂还给学生,给学生一个自主学习的机会,下面就《圆柱的侧面积与表面积》谈谈自己的教学体会。
因为任何知识获得的最佳途径是自己去发现,因为这种发现理解最深,也最容易掌握其中内在规律、性质联系.在学生自己发现圆柱侧面积可以转化成何种图形来求最简单、合理.而且对于一些不能剪开的圆柱,如铁圆柱、石圆柱、玻璃圆柱……,也发现了他们的底面积即长方形的长,圆柱的高即长方形的宽之间的对应关系。求圆柱侧面积只要用圆柱底面周长乘以高。通过这样的讨论交流不仅可以让学生发现,掌握圆柱侧面积计算公式,更进一步认识到长方形、平行四边形与圆柱的内在联系,从而使学生思维也从具体形象走向抽象概括。
在学生自主发现圆柱侧面积=底面周长×高后,我马上给出题目:一个圆柱底面直径0.3米,高2米,求它的侧面积?让学生独立进行解答。侧面积会求了又如何求圆柱的表面积呢?独立解决,一个圆柱高是15厘米,底面半径5厘米,它的表面积是多少?最后我还启发学生思考:学了这个公式,你能用它解决哪些实际问题?如有的学生提出圆柱侧面包装纸的用料问题,只需求一具侧面;如制造一种圆柱形无盖茶杯或水桶的表面积,只需计算一个底面加一个侧面;再如圆柱形汽油桶表面积,就要求两个底面和一个侧面……这样就拉近了所学数学知识与实际生活的联系,从而也培养了学生的能力。
这节课在教学时我并没有把大量时间放在如何讲解侧面积公式及其公式应用上,而是让学生大胆猜想,自主探索,也培养了他们人与人之间的交流合作,使他们的思维发生碰撞,充分发挥内在潜能,从而有效地培养了学生主动探索精神,动手操作能力与创新精神。
圆柱表面积课后反思不足之处篇三
《圆柱的表面积》这节课是我从教以来上的第一节市级公开课,若干年后改用苏教版教材,又在市级六年级新教材培训时上了这节课。“圆柱的表面积”是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率。这学期再一次教学圆柱的表面积,我深入钻研教材,并对以往的教学经验进行了整理,注重了知识的系统化教学,取得了较好的教学效果。
课前布置预习作业,找一贴有商标纸的`椰子汁罐,沿高剪开你有什么发现,然后给罐的上下底面剪两个底面给贴上。课上由一张长方形纸卷成圆柱,平面到立体,而后由圆柱展开成一个长方形,立体到平面。渗透了“化直为曲”“化曲为直”的思想。学生碰到圆柱侧面积问题时自然能运用,交流时,说沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。让学生观察后说出:展开后的长方形与圆柱侧面积的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。通过“展”、“围”的几次操作,让学生切实建立这两者之间的联系。
本节课中,现实生活问题的解决,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索尝试、同桌讨论交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
本堂课中探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。根据以往经验,在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在上这节课之前,我利用时间帮助学生把圆的周长和面积公式复习到熟练程度,侧面积的计算学生自然没困难。为帮助学生理清思路,表面积的计算分三步去进行,侧面积、底面积、侧面积加上两个底面积就是表面积。课上遇到计算比较繁琐的将数字改简单易算的,这节课的容量大,我觉得不必在计算上花费大量的时间。
实践下来,通过学生的作业反馈中,发现绝大部分算式列得都正确的,几个公式搞的还是清楚的,但是小数乘法由于3.14和带0整数的参与,有些错误。接下来的练习课中综合的表面积题中要继续加强。
圆柱表面积课后反思不足之处篇四
本节课的教学内容是“圆柱的认识”,这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用。其重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。
在本节课中,我通过展开圆柱体的模型,让学生观察到侧面展开后是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式推导出了圆柱侧面积的计算公式。但在这节课的'教学中,还存在着一些不足:
一是实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分的学生是联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已。
二是学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力。
三是部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。
文档为doc格式
圆柱表面积课后反思不足之处篇五
数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践,自主探索,合作交流是学生学习数学的重要方式.而且要倡导学生主动参与,乐于探究,培养他们获取新知识的能力.本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察,触摸,与同学对比,拿尺子量各自手中的圆柱,在观察,触摸,对比,测量中得出圆柱的特征.特别是在教学圆柱的侧面积时,我没有包办代替,充分让学生动手实践,操作,自己知道了圆柱侧面展开可能会出现的图形是长方形,正方形和平行四边形,而且弄明白了展开图形与圆柱各部分之间的关系,自己推导出了圆柱侧面积的计算方法,思路清晰,算理透彻,真正成了学习的主人.可以说,整堂课的学习过程,我不是让学生被动地接受教材或教师给出现成的结论,而是通过合理的实践活动,让学生经历了知识的'再创造'过程.由于学生经历了不断的'再创造',主动地从事数学思考,理解,在理解的基础上建构数学知识,所以整堂课的学习气氛和教学效果取得了双丰收.教师在本节课也真正体现《圆柱体的表面积》教学反思了组织者,合作者,引导者的身份。对于圆柱的侧面积:重点在于圆柱的侧面与长方形的转化过程。如何把底面的周长、高与长方形的长、宽对应起来是关键。
在这节课中,我是用一张长方形的纸卷也一个圆柱体的管子,做演示。同学们都能理解,把侧面打开就成了长方形,再换个角度,就能看到底圆周长=长方形的长,圆柱的高=长方形的宽。
对于表面积的处理,我先让学生自己找找,什么是圆柱体的表面积。通过学生在书本中画,小组讨论得出:
圆柱体的表面积=侧面积+两个底面积。
本节课的教学,学生学习兴趣浓厚,学习积极主动,课堂上他们动手操作,认真观察,独立思考,互相讨论,合作交流,终于发现了知识,领悟了知识,品尝到了成功的喜悦,学生自始至终在自主学习中发展。
1.重视学习内容的生活性。数学来源于生活,生活中到处有数学。从学生的生活实际,创设数学问题,这是激发学生学习数学兴趣和调动学生积极参与的有效方法。在教学的环节中,我创设了“八宝粥罐头”的情景,从学生的已有知识出发,让学生边看边想边说,复习了圆的面积和圆柱的特征。在突破侧面积的计算方法这个难点时,精心设疑:老师要制作一个圆柱形教具,请你帮助选择合适的部件(两个半径是3厘米的圆和一些大小不同的长方形)。问题的提出使学生思维进入了积极的状态:选择哪一个长方形才会与两个圆围成圆柱呢,促使学生思考圆柱的侧面与底面的关系。让学生融入到学习氛围中来。第二环节中,让学生在熟悉的生活背景下,根据已掌握的数学知识大胆探索,培养了学生分析能力和创新意识。
2.重视学习主体的创造性。著名数学家、教育家波利亚指出:“学习任何知识的最佳途径是自己去发现。”因为这种发现理解最深,也最容易掌握其中的内在规律、性质、和联系。学生独立思考,相互讨论,辩论澄清的过程,就是自己发现或创造的过程。本节课中,首先以现实生活问题引入,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对“选择哪一个长方形才会与两个圆围成圆柱呢”进行独立探索、尝试、讨论、辩论,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。
3.重视学习过程的实践性创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。在实践中推出圆柱的侧面积的计算,从而得知圆的表面积的计算方法,使学生在学习知识的过程中学会学习,同时,情感上得到满足。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。
圆柱体的表面积的计算是在学习了圆柱特征的基础上进行教学的,这节课的主要内容包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。.在新课的进行中始终抓住重点难点,教学思路清晰,引导学生大胆探索思考,独立解决问题.教学中面向全体学生,做到精讲多练,讲练结合。让学生自己发现问题自己解决问题,在有争议的问题上教师能适时点拨学生自己去寻找正确的答案,使他们享受成功的喜悦,同时也把数学与生活紧密的联系起来,从而培养了学生学习数学的兴趣。
圆柱表面积课后反思不足之处篇六
数学课程标准指出,有效的数学活动不能依赖模仿和记忆,动手实践,自主探索,合作交流是学生学习数学的重要方式。而且,要倡导学生主动参与,乐于探究,培养他们获取新知识的能力。本节课一开始,我没有直接告诉学生圆柱的特征,而是让他们自己观察、触摸,感受什么是圆柱的表面积。接着我和同学们一起动手实践,操作,将自制的圆柱体模型展开,让学生明白圆柱体的表面积就是两个圆和一个长方形。通过观察,学生明白长方形的面积就是圆柱的侧面的面积。接着小组合作探讨圆柱侧面积的`计算方法,在这里让我惊讶的是,有一个孩子一边演示一边总结,长方形的长和宽都可以做圆柱体的底面周长。这是我没有想到的,最后孩子们通过小组合作推导出圆柱体表面积的计算方法,思路清晰,算理透彻,真正成了学习的主人。
圆柱表面积课后反思不足之处篇七
一、合理灵活地组织和利用教材。
“圆柱的表面积”这部分教学内容包括:圆柱的侧面积、表面积的计算,表面积在实际计算中的应用以及用进一步取近似值。教材共安排了三道例题,分两课时进行教学。教学时,我打破了传统的教学程序,将这些内容重新组织,合理灵活地利用教材在一课时内完成了两课时的教学任务。将侧面积计算方法的推导作为教学的难点来突破;将表面积的计算作为重点来教学;将表面积的实际应用作为重点来练习;将用进一法取近似值作为一个知识点在练习中理解和掌握。四者有机结合、相互联系,多而不乱。教学设计和安排既源于教材,又不同于教材。三道例题没有做专门的教学,但其指导思想和目的要求分别在练习过程中得以体现。整个一节课,增加容量但又学得轻松,极大提高了调堂教学效率。
二、较好地体现了教师主导与学生主体作用的统一。
本节课在教学上采用了引导、放手、引导的方法,通过教师的“导”,鼓励学生积极、主动地探究新知。
1、直观演示和实际操作相结合
新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
2、讲练结合。
教学这节课,我改变了传统的先讲后练的教学模式,做到讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。具体做法是:在学生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。
三、较好地培养学生的合作意识和实践能力。
1、培养了学生的合作意识。
在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作能力。
2、培养了学生的实践能力。
新课程提出:“使学生初步学会运用所学的数学知识和方法解决一些简单的实际问题。”所以在课的最后,我设计了一个操作练习:小组合作测量计算制作所带的圆柱形实物的用料面积。根据练习要求,组织学生在讨论的基础上动手测量,最后算出结果。学生在动手实践中做到了有目的、有计划、有步骤。并且根据实物的特点想出了很多测量所需数据的方法,既合理又灵活。在合作学习中不仅达到了学以致用的目的,而且培养了实践能力,体现了新课程标准的要求。
四、较好地利用现代化的教学手段。
本节课合理地利用了多媒体教学技术。在讲练过程中,动态逐一出示三个圆柱及条件,并闪烁所求底面和侧面。将直接的告诉条件和问题变成动态的先后展示,不仅做到思路清、方向明,而且极大地调动了学生学习的积极性。另外,多媒体将生活中的油漆桶、水桶、羽毛球筒等实物“搬”到课堂,加深了学生对表面积实际计算意义的直观认识和理解,使学生感受到了数学与现实生活的密切联系。