在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
乘法公式与因式分解教学反思篇一
上节课学习过乘法公式中的“完全平方公式”之后,本节课继续研究另一个公式“平方差公式”。在备课之初,就和初一的同事商定了教学计划,一直认为“平方差公式”掌握的如何,关键在于学生对于算式中“相等项和符号相反项”的理解,这也是本节课的难点。
课堂教学“情境创设”“活动探索”环节分析反思:
我注重了公式的引入教学过程,首先借用生活实例“周宁(班上生活委员)到商店买了 10.2 元 / 千克的糖果 9.8 千克,并一口报出了总价钱 99.96 元,问同学们,周宁用了什么公式”引入新课的问题,并让学生体会到“数学与生活”的密切联系,也有助于“情感态度与价值观”这一教学目标的落实。
活动的参与不仅能加深对新知的理解,更重要的是在这一过程中,学生获得了更多的数学经验,思维得到了训练,这是三维目标当中的“过程与方法”,很有价值,是检验数学教学成效大小的重要指标。
活动内容是将边长为 b 的小正方形覆盖到边长为 a 的大正方形上,计算未覆盖面积的大小。在研读教材及教参是,推荐的方法是转变成两个面积相等的梯形。这种方法容易计算,但是学生不易想到。所以考虑到另一种方法,即“割补法”。设计时,就是准备根据学生的任意选择进行接下来的探索。在课堂教学中,引导学生观察小正方形无论放在大正方形的什么位置,未覆盖面积大小不变,师问:“你觉得,把小正方形放在什么位置,容易进行计算”,学生受到启发很快想到了,将小正方形发在一个角落。接下来另一个学生想到了分成两个长方形,在此基础上,教师和学生共同用“割补法”完成了活动的探索,得到了平方差公式“ (a+b)*(a-b)=a2-b2 ” .
反思这一教学环节,有两点做的不足,一是学生参与不足,二是教师急于求成。学生参与不足是因为整个活动的操作环节都是教师完成的,学生没有切身的体会,进而导致学生探索的效果不理想,当我看到学生说不出来时,急于求成,就替学生完成了有难度的活动。而难度都让教师解决了,学生的锻炼机会就没有了。设计探索活动的意义就没有了。
解决这两点不足,我觉得首先在备课之初,就要考虑选择的探索活动对于学生而言,难度是否适中,如果太难了,必然影响教学效果。另一个就是课前准备充分,如果教师能够组织学生准备一些教具,这样学生就能参与进来,有了更加直接的感性认识,探索活动的效果必然会好些,教学目标“过程与方法”才能有效的落实。
乘法公式与因式分解教学反思篇二
本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的`能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。
本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
乘法公式与因式分解教学反思篇三
数学课程标准中关于公式的教学目标是:会推导公式(a+b)(a-b)=a2-b2,了解公式的几何背景,并能简单计算。教材在安排两数和乘以两数差公式时,先根据多项式乘法法则对公式进行推导,再通过求一个几何图形的面积引出公式,最后安排两道例题。
教学中,我基本按教材顺序进行教学,大多数同学也都掌握了公式的特点,会有公式进行计算,但从学生作业反馈的情况来看,效果并不好。事后通过个别辅导等,方才使学生会用平方差公式进行计算。
反思这节课的教学,我觉得有以下三个环节未处理好:
一是直接引出图形,未能注重情景的创设。如果先出示一组计算题:如:(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),限定时间让学生用多项式乘法法则进行计算,然后启发学生观察这组计算题的.特点,引导学生自己发现平方差公式,再通过拼图验证公式的正确性。那么,学生就能明白我们为什么要学习了平方差公式。从激发学生的学习兴趣考虑,此举效果可能更好。
二是在公式得出后,我急于代替学生说出公式的结构特点,而不是让学生自己独立说出,此举不利于加深学生对公式结构的掌握,在后来的学习中也就难以灵活运用。同时也不利于培养学生的口头表达能力。
三是例题的选取缺乏遇见性。虽然学生会用平方差公式求(a+b)(a-b),(a+3b)(a-3b),(0.5x-3y)(0.5x+3y),但对于一些变式题,学生则感到难以下手,比如(b+a)(-b+a),(3b+a)(a-3b),(-0.5x-3y)(0.5x+3y),(a+b-c)(a-b+c),(0.5x-3y)2(0.5x+3y)2等。如果在进行例题教学时,我除了能注重发挥传统教学的长处,还能适当进行一题多变的训练,那么学生遇到上述习题,或许会不觉得那么难了。
乘法公式与因式分解教学反思篇四
乘法公式是《整式的乘除》一章的重要内容,也是今后学习数学的重要工具,要学好这部分,除了要注意:
1、掌握公式的几何意义比如完全平方公式。
2、注意掌握公式的结构特点,掌握公式的结构特点是正确使用公式的前提。如平方差公式的结构特点是:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。掌握了这些特点,就能在各种情况下正确运用平方差公式进行计算了。
3、 注意公式中字母的广泛意义,乘法公式中的字母既可以代表任意的数,又可以代表代数式,只有注意到字母所表示的意义的广泛性,就能扩大乘法公式的应用范围。
对课本中的教材必须要看的更深也更广,所以我就在学生对乘法公式的基础知识掌握的还不错的基础上专门提出了今天的内容,可以说是带点专题性质也可以说是课本知识的一种延续,让学生还要注意乘法公式的逆用,不仅要掌握乘法公式的正向应用,还要注意掌握公式的逆向应用,乘法公式均可逆用,特别是完全平方公式的逆用就是配方,配方是一种很重要的数学思想方法,它的应用非常广泛。还要注意乘法公式的变形,要善于对公式变形的应用,在解题中充分体现应用公式的思维灵活性和广泛性。同学们在运用公式时,不应拘泥于公式的形式而要深刻理解、灵活运用。在课堂的反映中,我深刻的感到这个这样的教学内容虽然脱离了课本,但是又和课本内容紧密联系非常受学生欢迎,主要表现在学生的注意力相当集中,尽管没有让更多的同学表达他们的思路,但是让同学们的思维都动了起来,当有些同学有了自己的思路之后,都能大胆地发表自己的见解,或者在老师的启示下能够产生新的解题方法,但是我也发现对部分领悟能力较弱的孩子有一定的困难,需要老师把解题过程能够全部的展现出来。
乘法公式与因式分解教学反思篇五
通过“数值转换机”的练习,让学生在计算中验证“完全平方公式”。学生在这堂上快速地做完这些问题,并在老师的引导下,归纳出完全平方公式,并完成了相关的基础练习。本节课的任务顺利完成。
两节课后,心里很虚。第一个教学班,侧重于面积与代数恒等式的关系验证,但学生的基础练习不够,尤其是学困生较多的班级,他们对公式的熟练还是要靠大量的习题才能巩固,所以下一课时,还花了不少功夫重新详解计算。第二个教学班,强调了数值的计算,掌握了公式的计算技巧,但学生少了逻辑思维的推敲,此课他们成了“数值计算器”了,他们与第一个教学班的公式认识深度肯定不同,当回头给他们补充面积的表示,他们直嚷听不懂,但他们解题的能力又比第一教学班稍胜一点。矛盾啊!到底是要“素质”还是要“分数”啊!尤其是我们学校的学生们。
不过第一种的方法在后面的教学尝到了一些甜头。在勾股定理的公式推导中,第一个教学班的'学生很容易就接受了,并且对不同的图形推导方式,他们都以极大的兴趣投入了计算、推导。这是让我最想不到的。
通过这次的课堂试验比较,给我最大的感受是,我们要相信学生的能力,即便他们不强,但是通过适当的引导,多样化的手段,他们还是能达到我们的目标。对于学困生的教学,我们不光着眼于基础与技能的训练,还可以给他们一点拓展的机会,有时会给我们带来惊喜。