在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
初中数学说课稿 初中数学说课稿一等奖篇一
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
本节课选自人教版初中数学八年级下册第十八章18.1.2的内容《平行四边形的判定》。本课主要让学生掌握平行四边形判定的四种方法,会应用平行四边形的判定方法。在此之前,学生已经学习过平行四边形的性质,为本节课的学习打下了良好的基础。同时,本节课的学习也为今后进一步学习特殊的`平行四边形等相关知识起到了铺垫的作用。
接下来谈谈学生的实际情况。八年级的学生已经掌握了一定的基础知识,有着良好的学习习惯,上课时能积极思考,主动、创造性的学习。而且各个方面都已经发展的比较完善,具备了一定的分析问题能力和解决问题的经验,教学过程相对而言比较顺畅。
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解并掌握平行四边形的四条判定定理,会用判定定理解决相应问题。
(二)过程与方法
经历探究和证明平行四边形判定定理的过程,提升逻辑推理能力和解决问题的能力。
(三)情感、态度与价值观
体会方法的多样性,激发学习兴趣,感受几何思维的真正内涵。
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平行四边形的判定定理。教学难点是:平行四边形判定定理的证明和应用。
依据新课程改革精神与学生认知发展现状,突破难点有效实现知识的巩固,我将采用讲解法、启发引导法、练习法等教学方法,并在教学过程中有意识的培养学生的合作探究能力、自主探究能力,使之真正意义上成为学会学习的人。
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
首先是导入环节。我采用复习导入的方法,请学生回忆平行四边形的定义及性质,然后提问怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?由此引出今天学习的内容《平行四边形的判定》。
从简单的回顾中引入新课,既复习了旧知,又为探索新知做好铺垫,同时使学生感受到知识之间的联系。
(二)探索新知
接下来是教学中最重要的新知探索环节,我主要采用讲解法、启发法等。
结合导入部分学生回答的平行四边形对边相等,对角相等,对角线互相平分,提出问题:反过来对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?也就是它们的逆命题是否成立呢?
接下来组织学生进行实验验证。实验一:取两长两短的四根木条用小钉钉在一起,做成一个四边形,其中两根长木条长度相等,两根短木条长度相等。如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。通过动手操作直观感受,学生能初步得出结论:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
紧接着继续提问学生:你能根据平行四边形的定义证明它们吗?如何证明“对角线互相平分的四边形是平行四边形”?先请学生将命题翻译成符号语言,指出已知和待证结论。接着我给出提示:观察两条对角线将平行四边形分割成什么样的图形?如何判定其中一组对边平行?判定平行需要的条件怎么得到?给出思路引导后,组织学生小组合作完成证明。学生完成后,我规范证明过程的书写。由于时间所限,我会直接告诉学生两组对边分别相等或两组对角分别相等的四边形也是平行四边形,证明留给学生课后完成,并明确平行四边形的判定定理与相应的性质定理互为逆定理。
接着我会提出一个思考题:如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?并给出思路引导:先想想平行四边形的一组对边有什么性质?写出逆命题是否成立,能否作为判定方法?请学生稍作讨论,得出猜想:一组对边平行且相等的四边形是平行四边形。然后继续小组合作证明。我会鼓励学生使用不同方法,可以直接应用前三条判定定理。学生不难完成证明并得到平行四边形的第四个判定定理:一组对边平行且相等的四边形是平行四边形。紧接着我会引导学生分别从边、角、对角线等方面梳理平行四边形的判定方法,及时巩固。
在本环节中,引导学生合作探讨,再结合老师的适时引导以及讲解,帮助学生深刻的理解。全面发挥了学生的主观能动性,提高了学生的学习兴趣。
初中数学说课稿 初中数学说课稿一等奖篇二
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活
的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的.探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高
(一)学情分析:内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进
行的,为后面学习可化为一元二次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:midea---class纯软多媒体教学网几何画板
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
初中数学说课稿 初中数学说课稿一等奖篇三
1、从教材的地位与作用看:
⑴本节课的主要内容是平方差公式的推导和平方差公式在整式乘法中的应用。 ⑵它是在学生已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用;
⑶是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结;是从一般到特殊的认识过程的范例。
⑷它应用十分广泛,通过乘法公式的学习,可以丰富教学内容,开拓学生视野。更是今后学习因式公解、分式运算及其它代数式变形的重要基础。
2、从学生学习过程的角度看:
⑴ 学生刚学过多项式的乘法,已经具备学习和运用平方差公式的知识结构;
⑵ 由于学生初次学习乘法公式,认清公式结构并不容易,因此,教学时不可拔高要求,追求一步到位;
⑶ 学生在本节课学习过程中出现的错误,迸发出的思维火花、情感都是本节课较好的教学资源。
3、教学目标分析
(1)知识与技能
1、经历探索平方差公式的过程、
2、会推导平方差公式,并能运用公式进行简单的运算、
(2)过程与方法
1、在探索平方差公式的过程中,培养符号感和推理能力、
2、培养学生观察、归纳、概括的能力、
3、情感与价值观要求
在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美、
让学生在合作探究的学习过程中体验成功的喜悦;培养学生敢于挑战、勇于探索的精神和善于观察、大胆创新的思维品质。
平方差公式的推导和应用、
理解平方差公式的结构特征,灵活应用平方差公式、
“认清结构,找准a、b”。
教学流程安排:
活动1:创设情境 激趣引入
活动2:自主探究 归纳发现
活动3:解释运用 解决问题
活动4:反馈练习 拓展应用
活动5:反思小结 布置作业
1、学情透视:
(1)有利因素:
学生已经具备了导出平方差公式的知识与技能;同时,有了对整式运算“快”,“准”的积极心理;
学生独立探索,合作交流的习惯正逐渐养成。
(2)不利因素:
两个多项式相乘的形式复杂多变,学生较易被假象所迷惑;
部分学生对多项式相乘还不够熟练和细心,学生学习能力也参差不齐。
2、学法指导:对于数与代数的学习来说,重要的是让学生学会探究模式、发现规律、而不是死记结论,死套公式和法则。[]只有经过自己的探索,才能不仅“知其然”,而且知其“所以然“,才能真正获得知识,懂得公式的意义,掌握公式的应用。而且通过探究公式的活动,可以提高探索能力,也有利于掌握数与代数的运算和规律。因此通过创设“速算”的情境来激发学生的探究兴趣。
(1)自主探究:指导学生认真思考,细心观察,大胆发现得出平方差公式,学会探索,学会学习。遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中
(2)合作交流: 有学生之间的交流,也有师生之间的交流,在课堂中构建和谐,民主的气氛。
3、教学构思:
(1)教学方法:我采用的是探究性学习教学模式,利用多项式的乘法,探索归纳出平方差公式,领会a,b 的含义,从操作活动中探索公式的几何背景,让学生带着原有的知识背景、生活体验和理解走进学习活动,并通过自己的主动探索,与同学合作交流、反思等,构建对知识的形成和运用。这样不仅能够理解、归纳平方差公式的特点,而且充分感受到数学演绎的过程和数学知识的整体性,学会进行有条理的表达。使教法、学法和谐统一,形成由感性到理性认知过程,促进学生全面发展。
(2)教学手段:利用多媒体等教学手段,激发学生的学习兴趣,帮助学生突破难点,提高课堂教学效率
《新课程标准》中明确指出:“数学教学是数学活动的教学,学生数学学习的主人。教师的职责在于向学生提供从事数学活动家机会,在活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。”在教学设计时,以课标理念为指导思想,以多媒体教学课件为辅助手段,突出对平方差公式的推导和应用。自主探究、举一反三、语言叙述、推导验证、几何解释、应用巩固等活动都是根据学生的认知特点和所学知识的特征,让学生经历数学知识的形成与应用过程,以促进学生的有效学习。
在教学活动的组织中始终注意:
(1)以问题为活动的核心。在组织活动前,结合学习内容和学生实际,更好地使用教科书,创设问题情境。
(2)探究是一个活动过程也是学生的思维过程,对学生的发展来说是最重要的。在对比中学,在对比中用,在对比中再进行比较,从基本类型的题目到变化多端的'题目,从单一题型到复杂题型,从式中的位置、符号、系数、指数、项数等逐一对比,引导学生多角度思考问题,抓住公式、法则的实质,达到运用自如的效果。让学生认知内化,形成能力。
(3)促进学生发展是活动的目的。数学教育要以获取知识为首要目标转变为首先关注人的发展,这是义务教育阶段数学课程的基本理念和基本出发点。因此,本节课组织上活动的目的,不是为了单纯地传授知识,而是注意让学生在参与平方差公式的探究推导、归纳证明、解释应用的过程中促进学生代数推理能力、表达能力、与人合作意识、数学思想方法等各方面的进一步发展。
我紧紧抓住这节课的教学重点:平方差公式的推导和应用;突破一个难点:理解平方差公式的结构特征,灵活应用平方差公式,注意符号问题;在例题教学中,让学生深刻理解这节课的关键:识别完全相同的项a和互为相反数b;精心选择练习题,培养学生熟练运用公式能力,尽量满足不同层次学生的要求。
通过这节课我认为今后的教学还需要备好学生、备好教材(要深挖),设计好自己的教案,注重学生的主体地位,渗透数学想方法,把握好知识的发生过程,不是机械的记忆,简单的叠加,而要做到理解的基础上记忆,符合认知规律的重新构建,设计时注意要有阶梯,且要适度,提高自己的点拨技巧,为上好每一节课而不懈努力。
初中数学说课稿 初中数学说课稿一等奖篇四
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
1创设情境,提出问题
2.实验操作,模型构建
3.回归生活,应用新知
4.知识拓展,巩固深化
5.感悟收获,布置作业
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的'环节.
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形ⅰ、ⅱ、ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形ⅰ、ⅱ、ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为x,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
这节课你的收获是什么?
作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料.
板书设计
探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:
1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.
初中数学说课稿 初中数学说课稿一等奖篇五
苏教版数学四年级下册第43~45页。
这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习平行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的底,进一步感受高与底的意义。
1、知识与技能目标
(1)理解平行四边形的概念及其特征。
(2)认识平行四边形的底和高,会画高。
(3)培养学生实践能力,观察能力、分析能力。
2、过程与方法目标
让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。
3、情感态度与价值观目标
让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。
教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。
教学难点:是学生在做平行四边形的过程中体会其特征。
教具:三角板、平行四边形纸片、长方形活动框、小黑板等。
学具:三角板、平行四边形纸片、量角器。
四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。
这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点
“数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。最后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。
心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。
本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
(一)认一认形成表象
师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?
不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)
(二)找一找感知特征
1、在例题图中找平行四边形
师:老师这有几幅图,你能在这上面找到平行四边形吗?
2、寻找生活中的平行四边形
师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)
(三)做一做探究特征
1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的'身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】
(四)练一练巩固表象
完成想想做做第1、2题
(五)画一画认识高、底
1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。
3、平行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。
2、完成想想做做第6题(课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?
(3)得出平行四边形的特性
师再捏住平行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书p45“你知道吗?”)
【设计意图:】
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找平行四边形容易变形的特性在生活中的应用。
【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】
初中数学说课稿 初中数学说课稿一等奖篇六
这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。
②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
五、教学过程设计
一、复习回顾
1.一次函数的定义。
2.一次函数的'图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。
教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。
设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:作出函数y=2x-5的图象,观察图象回答下列问题:
(1) x取何值时,2x-5=0?
(2) x取哪些值时, 2x-5>0?
(3) x取哪些值时, 2x-5<0?
(4) x取哪些值时, 2x-5>3?
教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。
学生可以用不同方法解答,教师意图是尽量用图象求解。
问题2:用画函数图象的方法解不等式:
-2x+3<3x-7.
分析:
由一次函数与一元一次不等式的关系可先将其化为一般形式,
再画图求解;也可以将-2x+3与3x-7看作是两个
关于x的一次函数,即y1=-2x+3,y2=3x-7。
于是不等式的解集即对应着y1 解法1: 原不等式化为5x-10>0,画出直线y=5x-10如图所示, 可以看出x>2时这条直线上的点在x轴上方, 即这时y=5x-10>0,所以不等式的解集为x>2. 解法2: 将原不等式的两边分别看作是两个一次函数, 画出直线l1∶y=-2x+3,y2=3x-7,如图所示, 可以看出它们的交点的横坐标为2,当x>2时, 对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2. 三、达测深化 做一做: 兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题: (1)何时哥哥追上弟弟? (2)何时弟弟跑在哥哥前面? (3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m? (5) 你是怎样求解的?与同伴交流。 教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。 设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。 四、小结 通过本节课的学习,你有哪些收获? 五、作业 p19 读一读 p20 习题1.6 《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。 “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。 鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下: 经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。 经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。 在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。 为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。 我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。 在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的.运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。 此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。 《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。 上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。 教学环节 教 学 活 动 设 计 设 计 说 明 创设情境 自然引入 1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。 1、课本内容:我以为可以明白为探索规则——明白规则——应用规则,进一步表现了新课标中“情境引入——数学建模——表明、拓展与应用的模式”。分式的乘除法与分数的乘除法雷同,以是可通过类比,探索分式的乘除运算规则的历程,会举行简朴的分式的乘除法运算,分式运算的效果要化成最简分式和整式,也便是分式的约分,要修业生能办理一些与分式有关的简朴的现实题目。 2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。 3、教学目标 知识目标: (1)、理解分式的乘除运算法则 (2)、会进行简单的分式的乘除法运算 能力目标: (1)、类比分数的乘除运算法则,探索分式的乘除运算法则。 (2)、能解决一些与分式有关的简单的实际问题。 情感目标: (1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。 (2)、培养学生的创新意识和应用意识。 (3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。 4、教学重点:分式乘除法的法则及应用、 5、教学难点:分子、分母是多项式的分式的乘除法的运算。 教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。 1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的'主体。 2、合作式教学,在师生平等的交流中评价学习。 学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。 1、类比学习的方法。通过与分数的乘除法运算类比。 2、合作学习。 1、类比学习,探索法则。(约3分钟) 让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法) 复习:分数的乘除法法则(抽一学生口答) 猜一猜:;(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零) 类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母) 活动目的:让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。 教学效果:通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。 2、理解法则:(约2分钟) (1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘、 (2)符号表述:×=;÷=×=、 活动目的:两种形式巩固对法则的理解。 教学效果:理解法则,进一步发展学生的符号感。 3、应用:(约20分钟) (1)牛刀小试 教材74页到76页的例1、做一做、例2、我准备把例1和例2先学习了。再学习做一做。 写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助! 用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。 任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。 【知识与技能】 掌握应用因式分解的方法,会正确求一元二次方程的解。 【过程与方法】 通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。 【情感态度与价值观】 通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。 【重点】 运用因式分解法求解一元二次方程。 【难点】 发现与理解分解因式的方法。 本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。 同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的`思维能力,发挥学生的自觉性、活动性和创造性。 (一)导入新课 因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。 (二)探索新知 问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的? 学生小组讨论,探究后,展示三种做法。 问题:小颖用的什么法?——公式法 小明的解法对吗?为什么?——违背了等式的性质,x可能是零。 小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。 问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便] 师引导学生得出结论: 如果a·b=0,那么a=0或b=0 (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。) “或”有下列三层含义 ①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0 问题3: (1)什么样的一元二次方程可以用因式分解法来解? (2)用因式分解法解一元二次方程,其关键是什么? (3)用因式分解法解一元二次方程的理论依据是什么? (4)用因式分解法解一元二方程,必须要先化成一般形式吗? 因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。 这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。” (三)巩固提高 在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下: 用分解因式法解下列方程吗? 在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。 (四)小结作业 最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。 我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下: 本节課主要是在学生学习了整式乘法、多项式乘以多项式的基础上,由图形的面积引出本节課的内容。在前面一节学生已学过"平方差公式" ,而这一节課继续探索完全平方公式。 完全平方公式不仅在整式乘法运算中有很重要的作用,也是今后分解因式、一元二次方程解法、二次函数等有关内容的基础知识。 1. 使学生经历探索完全平方公式的过程,进一步发展符号感和推理能力。 2. 会推导完全平方公式,并能运用公式进行简单的计算。 3. 了解(a+b)2 = a2+2ab+b2 的几何背景,向学生渗透数形结合的思想,让学生知道数学来源于实践,培养学生对数学的兴趣。 4. 培养学生能在独立思考的基础上,积极参与对数学问题的讨论,并敢于表达自己的观点,体验到解决问题的成功感。 推导公式(a±b)2 = a2±2ab+b2 和对公式的正确理解是本节課的教学重点,对完全平方公式的运用是本节課教学的难点。 1.在知识掌握上,前面,学生已学过多项式乘以多项式的运算,特别是已有推导平方差公式的基础,再推导完全平方公式不是很困难。但是对于几何图形如何用代数来表示,从而表示图形的面积,学生会有一定困难,另外,在运用公式时,对公式中a、b的理解,对"和""差"符号的区别也会有些障碍。 2.我所教的班级的学生,对数学课有一定的兴趣,爱发表见解,但是学生好动,注意力有时不集中,所以在教学中运用图形的直观形象提出问题,引发学生的兴趣,并引导学生发表见解,培养他们有条理的思考和语言的表达能力。 1.学生已经有多项式乘法的基础,前面又有了推导平方差公式的经验,所以,本节课主要以观察、思考、讨论贯穿于整个教学环节中,采用启发式教学法和师生互动式教学模式。教给学生"多观察、多思考多动手"的'学习方法,教学中利用板书和例题向学生提供较多的活动机会和空间,使学生在"动脑、动口、动手"的过程中,掌握本节课的知识内容,从而培养学生独立解决问题的能力。 ㈠ 复习提问,引入新课。 教师首先复习提问: 1.前面我们学过了多项式乘以多项式的运算,请计算: ①(2x+3)( x-2)= ②(2x+3)(2x-3)= 找学生口述,老师板演。 2.刚才的第②小题,同学直接得出正确结果。运用了什么公式?正确表达公式的内容(让学生回答)。前面我们已经学过了平方差公式,符合这种类型的多项式乘法运算很简便,今天,我们再来学习新的公式。 引出今天的课题。 ㈡ 教师引导,推导公式。 1.教师用幻灯片演示教科书第33页第引例,让学生观察图片,并提出问题:图片中的图形面积可分为几部分?它们都是什么图形?每部分面积是多少?整个图形面积如何表示?有几种表示方法?它们的关系是什么?让学生四人一小组进行讨论、研究,最后在班级交流,由各组推举代表,回答上面的问题,教师统一同学们的意见,确定正确的答案。 2.教师再用幻灯片演示教课书中的"想一想" ,分别让三个学生到黑板板书,用乘法法则计算。 ① (a+b)2 =(a+b)(a+b)= ② (a-b)2 =(a-b)(a-b)= ③ 2 = = 其余同学在下面练习本上计算。 同学们计算出正确结果后教师总结,今天所学的公式叫做"完全平方公式" ,教师板书公式后,再让学生练习用语言叙述公式。 ㈢ 熟记公式,简单运用。 1.教师根据黑板书写的公式,请同学们观察两个式子有什么特点?引导学生观察项数、次数、符号、两个公式的异同点,学生先互相讨论,然后再回答。 2.师生共同完成例1. 教师先板演第⑴小题,教师板演时先讲清哪一项是公式中的a、b,正确按公式书写,最后再化简,教师演示过后,找二个同学板书第⑵、第⑶小题,其他同学在练习本上做,教师巡回检查,纠正错误。 ㈣ 归纳总结,练习反馈。 1.师生共同完成例1后。师生共同总结今天所学的内容,教师提出问题,可以让学生回答,回答不准确、不完整,教师给予补充。 ⑴ 今天学习了什么公式?如何表述? 如何用图形表示(a+b)2 ,如何用乘法法则计算(a+b)2 、(a-b)2 ⑵ 完全平方公式有什么特点? ⑶ 运用公式要注意什么? 要注意公式中的a、b可代表单个数字、单个字母或代数式,要分清"两数和""两数差"的公式中中间一项符号的区别。 2.学生独立完成教材第34页随堂练习,(补充两小题),完成后,同桌两人交换检查,教师抽查,把主要错误写在黑板上,表扬做得好的同学。 ㈤ 布置作业,课后思考。 要求全体学生必做教材第36页习题1.13 1.2.3. 对学有余力的学生提出思考题。 ⑴ 能否用完全平方公式计算(a+b+c)2 ,并得出结果。 ⑵ 能否用乘法法则计算(a+b)3 ,并得出结果。 以上是我对本节课的设计安排,有不足或错误之处,请各位老师批评指正。谢谢! 各位评委: 下午好!今天我说课的题目是《分式的乘除法(第1课时)》,选用是人教版的教材。根据新课标的理念,对于这节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。 (一)教材的地位和作用 本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。因此,这节课在整个的初中数学的学习中起着承上启下的过渡作用。 (二)教学目标分析 根据新课标的要求和这节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标: 1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。 2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。 3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。 (三)教学重难点 本着课程标准,在充分理解教材的基础上,我确立了以下的教学重点、难点: 教学重点:运用分式的乘除法法则进行运算。 教学难点:分子、分母为多项式的分式乘除运算。 下面,为了讲清重点难点,使学生能达到这节课的教学目标,我再从教法和学法上谈谈: 1.学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移。 2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。 (一)说教法 教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合这节课的内容特点和学生的年龄特征,这节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。 另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。 (二)说学法 从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力和活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为这节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的`问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生"学会"还要让学生"会学" 新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈这节课的教学过程安排: (一)提出问题,引入课题 俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题: 问题1求容积的高是 ,(引出分式乘法的学习需要)。 问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。 从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。 (二)类比联想,探究新知 从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。 解后总结概括: (1)式是什么运算?依据是什么? (2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导) (学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。 【分式的乘除法法则 】 乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。 除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。 用式子表示为: 设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。 (三)例题分析,应用新知 师生活动:教师参与并指导,学生独立思考,并尝试完成例题。 p11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。p11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破这节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。 (四)练习巩固,培养能力 p13练习第2题的(1)(3)(4)与第3题的(2) 师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。 通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。 (五)课堂小结,回扣目标 引导学生自主进行课堂小结: 1.这节课我们学习了哪些知识? 2.在知识应用过程中需要注意什么? 3.你有什么收获呢? 师生活动:学生反思,提出疑问,集体交流。 设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。 (六)布置作业 教科书习题6.2 第1、2(必做) 练习册p (选做),我设计了必做题和选做题,必做题是对这节课内容的一个反馈,选做题是对这节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。 在这节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。 尊敬的各位考官: 大家好,我是x号考生,今天我说课的题目是《单项式》。 新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。 首先来谈一谈我对教材的理解。 本节课选自人教版初中数学七年级上册第二章第一节《整式》,属于数与代数的领域。它是在学生已经掌握用字母表示数和列式表示数量关系的基础上进行教学的,是由数到式转变的起始课,为以后学习合并同类项、函数以及方程等内容打下基础。 接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的分析能力,也能做出简单的归纳概括,但是本节课还需要学生对概念进行辨析,这对学生而言有一定的难度,并且本学段的学生受挫折能力不强。考虑到学生的特点与能力,教学中我会注意给予适当的鼓励与引导。 根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标: 理解并掌握单项式的定义及相关概念,能准确判断一个单项式的系数和次数。 经历观察、归纳单项式特点的过程,提高总结归纳能力,增强符号意识。 感受生活中的`数学,体会数学的魅力,激发学习数学的兴趣。 在教学目标的实现过程中,教学重点是:单项式的定义及相关概念;教学难点是:单独的一个数或字母也是单项式,单项式的次数,同一个单项式可以表示不同的含义。 为了突破重点,解决难点,顺利达成教学目标,本节课我将采用讲授法、小组讨论法、自主探究法等教学方法。在教学中积极培养学生的学习兴趣和动机,明确学习目的。 下面重点谈谈我对教学过程的设计。 这样不仅可以巩固新知,而且通过练习题来补充讲解知识点,以更具体形象的方式加深理解,学生能够更好地掌握新知。 我的板书设计遵循简洁明了、重点突出的原则,以下是我的板书设计: (说教材) 数与形是数学的两大组成部分,数形结合的思想方法是数学中的一个重要思想方法,而数轴是数形结合的高度统一。数轴是新人教版数学教材七年级上册第一章第二节的内容,是在学生学习了有理数概念的基础上再介绍的。通过数轴的学习可加深学生对有理数概念的理解,并为后面引出相反数、绝对值的概念,学习有理数大小比较、有理数运算法则、平面直角坐标系等打下良好的基础,起到承上启下的作用。 本课的教学对象是刚刚步入中学校门的七年级学生,此阶段学生天真活泼,好奇心强,有较强的模仿能力和求知欲望,而且富有一定的逻辑思维能力。但在新知的学习过程中,还是较容易出现理解局限的问题。 根据《新课程标准》对学生在知识技能、数学思考、解决问题、情感态度等方面的要求,我确定了本节课教学目标如下: a、知识技能: 1、理解数轴概念,会画数轴。 2、知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。 b、数学思考: 1、从直观认识到理性认识,从而建立数轴概念。 2、通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。 c、解决问题:会利用数轴解决有关问题。 d、情感态度:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性,感受数学与生活的联系。 本节课教学重点我确定为:数轴的概念。 因为:只要数轴概念真正理解了,画数轴、在数轴上表示有理数等也就容易了。 本节课教学难点我确定为:从直观认识到理性认识,从而建立数轴概念。 因为:七年级的学生形象思维占主导地位,抽象思维刚开始萌芽。 教有教法,学有学法,但无定法,贵在得法,下面谈谈本节课的教法与学法。 1、教法:数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以学生既为主体,又为客体的原则下,展现知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重。基于本节课的特点:课堂教学采用了“情境—问题—观察—思考—提高”的.步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。 根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地掌握数轴的概念,并通过练习,使学生更好地理解数轴概念,从而体会数形结合的思想。 根据本节课的教学内容,我所采用的教学手段是:多媒体辅助教学 通过课件演示,创设情境,让学生分四人小组讨论、交流、总结,并派代表发言。教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议,从而突出教师是学生获取知识的启发者、引导者、帮助者和参与者的形象。 2、学法:俗话说“授人以鱼,不如授人以渔”,在教学中我特别重视学法的指导,让学生在“观察—操作—交流—思考—概括—应用”的学习过程中,自主参与、经历数学知识的形成和应用过程。告诉学生,学习数学不是简单模仿、机械操练,而是探究学习、发现学习、研究学习、合作学习。 “凡事预则立,不预则废”,充分的课前准备是成功的一半。 老师:要充分备课,精心制作多媒体课件,准备教具 学生:要认真预习,准备直尺或三角板 课堂教学是学生获取知识、形成技能、发展能力和思维的主战场。为了突出重点、突破难点、达到目标,我设计了以下几个教学环节: (一)、复习旧知 通过对已知知识的回顾复习,使学生更易于接受新知识。 (二)、创设情景,引入课题 为了使学生明白数与形的对应关系,初步认识数形结合的美妙之处,我设计了: 观察温度计的活动,目的是为了让学生切身体会数与形的对应关系,为学习数轴概念埋下伏笔。 学生拿出自己准备的温度计分小组讨论观察,共同发现数与形的对应关系。 接下来,我创设了这样一个情境: 在一条东西方向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆。随后我提出问题:“怎样用数简明地表示这些树、电线杆与汽车站的相对位置?”(学生小组讨论后再派代表回答)通过这个活动,让学生们认识到:考虑东西方向的马路上一些树、电线杆与汽车站的相对位置关系,既要考虑距离,又要考虑方向,从而需要用正负数描述。 前面几个活动之后,学生对数形结合的思想方法已有所体会,为此我让学生: 再次观察所画情境图、温度计 并引导学生观察、比较,将其抽象成一条直线。 这样,就把正数、0和负数用一条直线上点表示出来。 (三)、学习概念,解决问题 通过刚才的观察、比较,我引出了新课: 1)学习数轴的概念 我先进行讲解: 一般地,在数学中人们用画图的方式把数“直观化”。通常用一条直线上的点表示数,当然这条直线必须满足以下三点要求: (1)在直线上任取一个点表示数0,这个点叫做原点。 (2)规定直线上从原点向右(或上)为正方向,通常以向右为正方向。 (3)选取适当的长度为单位长度,每隔一个单位长度取一个点。 再画数轴 师生共同归纳画数轴的步骤,要求学生独立画出数轴,并互相交流,老师巡堂并参与交流使学生弄清如何画数轴。 设计意图:通过学生画数轴,交流和反思,使学生真正掌握数轴的概念。 3)在数轴上表示右边各数: 4)指出数轴上a,b,c,d各点分别表示什么数。 设计意图:让学生明白任何一个有理数都可以用数轴上的一个点来表示。 下一个活动,填空:数轴上表示-2的点在原点的()边,距原点的距()表示3的点在原点的()边,距原点的距离是()。 通过填空,老师引导学生做出课本第12页的归纳 设计意图:通过从特殊到一般的方法归纳出数轴上的点的特征,逐步培养学生的抽象概括(从具体的数到字母表示的数)能力 课堂练习: 1)课本第12页的练习1、2题 2)强化练习: (1)在数轴上标出到原点的距离小于3的整数。 (2)在数轴上标出-5和+5之间的所有的整数。 设计意图:通过练习,巩固数轴的概念;强化练习是为了培养学生用数轴解决问题的能力。 小结:什么是数轴?如何画数轴?如何在数轴上表示有理数? 1)数轴的三要素:原点、正方向、单位长度。 2)画数轴的步骤: 1.画直线; 2.在直线上取一点作为原点; 3.确定正方向,并用箭头表示; 4.根据需要选取适当单位长度。 作业:课本第17页习题1.2第2题;学生用书同步训练 设计意图:通过适量的练习有利于学生掌握所学内容,对于学有余力的同学还应该给他们足够的发展空间,让他们多做同步训练。 这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。 (一)地位和作用:《正方形》这节课是人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。 (二)教学目标 根据大纲要本节课制定以下三方面的教学目标。 知识目标 1、要求学生掌握正方形的定义及性质; 2 、能正确运用正方形的性质进行简单的计算、推理、论证; 能力目标: 1、通过本节课培养学生观察、操作、探究、分析、归纳、总结等能力; 2、发展学生合情推理的意识,主动探究的习惯,逐步掌握说理的基本方法; 情感目标: 1、让学生树立科学、严谨、理论联系实际的良好学风; 2、培养学生互相帮助、团结协作、相互讨论的团队精神。 3、通过感受正方形图形的完美性,培养学生品格的完美性 重点与难点:本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。 1教法(说教法)针对本节课的特点,为了更有效的突出重点突破难点,采用"实践--观察--总结归纳--运用"为主线的教学方法。 通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理。 2学法(说学法) 叶圣陶说“教是为了不教“,也就是我们传授给学生的不只是知识的`内容,更重要的是指导学生掌握一些数学的学习方法。本节课重点以培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。 (一)相关知识回顾 :以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是 由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过动手操作演示以上两种变化,从而得出结论。 (二)新课讲解 通过之前学生们的发现引出今天的课题“正方形” 1、正方形的定义 :引导学生说出自己变化出正方形的过程,请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。(由课件演示)再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。 2、正方形的性质(由课件演示) 定理1:正方形的四个角都 是直角,四条边都相等; 定理 2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分 一组对角。以上是对正方形定义和性质的学习,之后进行例题讲解。 3、例题讲解(由课件显示) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。 此题是文字证明题,由学生们分组探讨,共同研究此题 的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。通过完成例题培养他们语言表达能力,让学生的个性得到充分的展示 4、课堂练习 设计目的 (1)进一步理解正方形的性质,并考察学生掌握的情况。 (2)通过生活中实际问题的举例,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学的实质是来源于生活并且服务于生活。 5课堂小结 :此环节通过图表小结正方形和前阶段所学特殊四边形之间的内在联系,从而体现出正方形完美的本质。渲染学生们应追求象正方形一样完美的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。 6、作业设计:教材课后习题19.2的7,13,15, 17题,通过此作业让同学们进一步巩固有关正方形的知识 1、本节课设计是以问题为主线,培养学生有条理思考问题的习惯和归纳概括的能力,并重视培养学生语言描述,然后进行引导交流形成规范语言。 2、通过拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学互帮互助,交流自己解决问题的过程,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作、合作交流,逻辑推理能力,提高学生分析和解决问题的能力。以上是我对正方形这节课的教学内容的设计,请大家多提宝贵意见,谢谢 各位评委: 下午好!今天我说课的题目是《分式的乘除法(第1课时)》,所选用是人教版的教材。根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。 (一)教材的地位与作用 本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。一方面,这是在学习了分式基本性质、分式的约分与因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法与分式方程等知识奠定了基础。因此,本节课在整个的初中数学的学习中起着承上启下的过渡作用。 (二)教学目标分析 根据新课标的要求与本节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标: 1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。 2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。 3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣与成功的体验。 (三)教学重难点 本着课程标准,在充分理解教材的基础上,我确立了如下的教学重点、难点: 教学重点:运用分式的`乘除法法则进行运算。 教学难点:分子、分母为多项式的分式乘除运算。 下面,为了讲清重点难点,使学生能达到本节课的教学目标,我再从教法与学法上谈谈: 1.学生已经学习分式基本性质、分式的约分与因式分解,通过与分数的乘除法类比,促进知识的正迁移。 2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化与提高,自学能力较强,通过类比学习加快知识的学习。 (一)说教法 教学方式的改变是新课标改革的目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。师生互动式教学以教学大纲为依据,渗透新的教育理念,遵循教师主导、学生为主体的原则,结合本节课的内容特点与学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以师生互动的形式,在教师的指导下突破难点:分式的乘除法运算,在例题的引导分析时,教学中应予以简单明白,深入浅出的分析本课教学难点:分子、分母为多项式的分式乘除运算。让学生在练习题中巩固难点,从真正意义上完成对知识的自我建构。 另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。 (二)说学法 从认知状况来说,学生在此之前对分数乘除法运算比较熟悉,加上对本章第一节分式及其性质学习,抓住初中生具有丰富的想象能力与活跃的思维能力,爱发表见解,希望得到老师的表扬这些心理特征,因此,我认为本节课适合采用学生自主探索、合作交流的数学学习方式。一方面运用实际生活中的问题引入,激发学生的兴趣,使他们在课堂上集中注意力;另一方面,由于分式的乘除法法则与分数的乘除法法则类似,以类比的方法得出分式的乘除法则,易于学生理解、接受,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性。不但让学生"学会"还要让学生"会学" 新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师与学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,接下来,我再具体谈谈本节课的教学过程安排: (一)提出问题,引入课题 俗话说:"好的开端是成功的一半"同样,好的引入能激发学生兴趣与求知欲。因此我用实际出发提出现实生活中的问题: 问题1求容积的高是 ,(引出分式乘法的学习需要)。 问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。 从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法与除法的实际需要,从而激发学生兴趣与求知欲。 (二)类比联想,探究新知 从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。 解后总结概括:(1)式是什么运算?依据是什么?(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导) (学生应该能说出依据的是:分数的乘法与除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。 【分式的乘除法法则 】 乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。 除法法则:分式除以分式, 把除式的分子、分母颠倒位置后,与被除式相乘。 用式子表示为: 设计意图:由于分式的乘除法法则与分数的乘除法法则类似,故以类比的方法得出分式的乘除法则,易于学生理解、接受,体现了自主探索,合作学习的新理念。 (三)例题分析,应用新知 师生活动:教师参与并指导,学生独立思考,并尝试完成例题。 p11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。p11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,与学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。 (四)练习巩固,培养能力 p13练习第2题的(1)(3)(4)与第3题的(2) 师生活动:教师 出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。 通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式与结果。 (五)课堂小结,回扣目标 引导学生自主进行课堂小结: 1.本节课我们学习了哪些知识? 2.在知识应用过程中需要注意什么? 3.你有什么收获呢? 师生活动:学生反思,提出疑问,集体交流。 设计意图:学习结果让学生作为反馈,让他们体验到学习数学的快乐,在交流中与全班同学分享,从而加深对知识的理解记忆。 (六)布置作业 教科书习题6.2 第1、2(必做) 练习册p (选做),我设计了必做题与选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。 在本节课中我将采用提纲式的板书设计,因为提纲式-条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容与知识体系的理解与记忆。初中数学说课稿 初中数学说课稿一等奖篇七
初中数学说课稿 初中数学说课稿一等奖篇八
初中数学说课稿 初中数学说课稿一等奖篇九
初中数学说课稿 初中数学说课稿一等奖篇十
初中数学说课稿 初中数学说课稿一等奖篇十一
初中数学说课稿 初中数学说课稿一等奖篇十二
初中数学说课稿 初中数学说课稿一等奖篇十三
初中数学说课稿 初中数学说课稿一等奖篇十四
初中数学说课稿 初中数学说课稿一等奖篇十五