作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
数学数一数教案中班篇一
从实际生活中感受有序数对的意义,并会确定平面内物体的位置
通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。
有序数对的概念及平面内确定点的方法
[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?
[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?
如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?
归纳8排6座、第3列,第2排共同点:用两个数表示位置。
约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。
介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。
可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。
引入课题有序数对
由上述问题直接引出概念
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
请思考:我们为什么要学习有序数对,有序数对都有哪些用途?
[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)
(1)请问(5,4)和(4,5)表示的是哪个同学的座位?
(2)游戏:教师说出一组数对相应的学生立即站起来。
(3)思考:(3,4)和(4,3)指的是不是同一位置?
[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)
小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)
解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)
知识点:有序数对
有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
注意点:(a,b)与(b,a)表示的是两个不同的位置。
主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。
小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。
自由设计 二选一
1、 在方格纸上设计一个用有序数对描述的图形。
2、设计一个游戏,如解密游戏、迷宫游戏等。
七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.
数学数一数教案中班篇二
1.经历运用方程解决实际问题的过程;
2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;
3.通过具体的例子感受一些常用的相等关系式.
【对话探索设计】
〖探索1〗
(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.
解:设前年购买计算机x台,那么,
设计(1)是让学生感受列代数式是列方程的基础.
去年购买的计算机的数量是________;
今年购买的计算机的数量是________;
根据关系:三年共购买计算机140台(关系式:前年购买量+去年购买量+今年购买量=140台),列得方程:
____________________________.
合并得________________.
系数化为1得______________.
答:______________________.
归纳:总量等于各部分量的和是一个基本的相等关系.
〖探索2〗
(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.
(2)把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.
解:设这个班级有x名学生,
根据第一关系,这批书共_________________本;
根据第二关系,这批书共_________________本;
这批书的总数是个定值,表示它的两个不同的式子应该相等.
熟悉这些关系有助于列方程.
根据这一相等关系列得方程:
________________________.
想一想,怎样解这个方程?
归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.
〖练习〗
1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.
解:设第二块地(漫灌)用水x吨,
第一块地(喷灌)用水________吨.
根据关系:两块地共用水300吨,可列方程:
__________________________________.
解得___________.
答:___________________________.
〖作业〗
p79.练习,p84.1,6
〖补充作业〗
1.按要求列出方程:
(1)x的1.2倍等于36;(2)y的四分之一比y的2倍大24.
2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.
根据去年的产量是950吨列方程:__________________.
解得___________.答_________________________.
数学数一数教案中班篇三
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2.初步培养学生观察、分析和抽象思维的能力。
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
一、从学生原有的认知结构提出问题
1.庇么数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x—3)
(3)乙数比x的倒数小7;(—7)
(4)乙数比x大16%((1+16%)x)
(应用引导的方法启发学生解答本题)
二、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x—3;(3)—7;(4)(1+16%)x
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a—b;(3)a2+b2;
(4)(a+b)(a—b);(5)(a+b)(b—a)或(b+a)(b—a)
(本题应由学生口答,教师板书完成)
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的.;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和
分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a—1);(3)(5a+7);(4)a2+a
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个
三、课堂练习
1鄙杓资为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商
2庇么数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数
3庇么数式表示:
(1)与a—1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数
〔(1)25—(a—1);(2);(3)2x2+2;(4)y(y+3)薄
四、师生共同小结
首先,请学生回答:
1痹跹列代数式?2绷写数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业
1庇么数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2币阎一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积。
学法探究
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律。
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)
数学数一数教案中班篇四
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间速度=路程/时间
画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。
教科书第17页练习1、2。
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
教科书习题6.3.2,第1至5题。
数学数一数教案中班篇五
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系
2、了解集合的运算包含了集合表示法之间的转化及数学解题的`一般思想
3、了解集合元素个数问题的讨论说明
通过提问汇总练习提炼的形式来发掘学生学习方法
培养学生系统化及创造性的思维
[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
数学数一数教案中班篇六
会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。
函数单调性的证明及判断。
函数单调性证明及其应用。
1、函数的定义域、值域、图象、表示方法
2、函数单调性
(1)单调增函数
(2)单调减函数
(3)单调区间
例1、画出下列函数图象,并写出单调区间:
(1)(2)(2)
例2、求证:函数在区间上是单调增函数。
例3、讨论函数的单调性,并证明你的结论。
变(1)讨论函数的单调性,并证明你的结论
变(2)讨论函数的单调性,并证明你的结论。
例4、试判断函数在上的单调性。
1、判断下列说法正确的是。
(1)若定义在上的函数满足,则函数是上的.单调增函数;
(2)若定义在上的函数满足,则函数在上不是单调减函数;
(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。
2、若一次函数在上是单调减函数,则点在直角坐标平面的()
a.上半平面b.下半平面c.左半平面d.右半平面
3、函数在上是______;函数在上是_______。
3.下图分别为函数和的图象,求函数和的单调增区间。
4、求证:函数是定义域上的单调减函数。
1、函数单调性的判断及证明。
1、求下列函数的单调区间
(1)(2)
2、画函数的图象,并写出单调区间。
3、求证:函数在上是单调增函数。
4、若函数,求函数的单调区间。
5、若函数在上是增函数,在上是减函数,试比较与的大小。
6、已知函数,试讨论函数f(x)在区间上的单调性。
变(1)已知函数,试讨论函数f(x)在区间上的单调性。
数学数一数教案中班篇七
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。
(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。
(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。
3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。
(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。
(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。
(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。
(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。