最新冀教版数学教学计划三篇(大全)

时间:2024-11-25 作者:储xy

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

冀教版中学数学的教学设计冀教版初中数学教学大纲篇一

15.2.1 分式的乘除(2)教学反思

【授课流程反思】

教师注意利用具体问题引出分式乘方实际存在的意义,进一步从分数的乘除法引导学生类比出分式乘方的法则,但在分析题意、列式子时,不易耽误太多时间。

【讲授效果反思】

分式的乘除与乘方的混合运算是教学的重点,也是难点,故教师可适当补充例题,强调运算顺序,提醒学生:不要盲目地跳步计算。

【师生互动反思】

学生在练习本上独立完成练习题,小组内辨别对错,井说出错误的原因.根据“学生好胜心强,并且喜欢找别人错误”的特点,把学生的注意力完全集中到练习中来,调动了学生学习的主动性,培养学生的语言表达能力。

【反思】

今天上完分式的乘除法对本课教学进行了自我反思:学生在前几节课学习了分式基本性质、分式的约分以及在上学期也已经学习因式分解,本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。只是需注意的是,分式乘除运算的结果要化为最简分式。

八年级学生有一定逻辑推理能力、代数式的运算的能力,主动探索知识的学风也初步形成,并且学生在七年级开始就都是四人小组合作学习,所以利用数学活动容易调动学生的学习兴趣,例如,针对本节课内容我设计一系列有梯度的问题,并采取小组合作形式,课堂气氛活跃,学生学习热情比较高,课堂学习效果非常较好。但数与式的差别也制约着学生的学习,特别是分子、分母为多项式的乘除法运算是学生学习的一个难点。

在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。

接下来的教学,我分两块进行。在分式的乘法中,举了两个例题,分子、分母都是单项式,先分子乘以分子,分母乘以分母,然后上下约分,分子、分母都是多项式,先分子乘以分子,分母乘以分母,然后要分解因式,再上下约分。分式的除法,也是遵循这样的框式。在例题的讲解中,我讲得比较慢,务必讲清,讲透。但在讲解过程中,也出现了些纰漏,之前细节没注意,约分时,一开始把约完的字母就把它擦掉了,虽然版式看上去很干净,但学生的作业本上不可能擦擦涂涂,在后面例题中我又修正了这种做法,干脆把字母保留,约在旁边,这样也很清楚明了。

在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,小组成员做好题目,再让其他小组成员上去批改,如果错的,直接让他把正确的做在旁边并像老师一样的讲解,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来,借此也提高了学生的主动性。

存在的问题:(1)由于部分学生计算能力欠缺,或有些细节没注意到,计算上还出现问题。在以后的教学中还应加强计算能力的培养。(2)时间安排不是太恰当,学生帮助学生解决问题时耽误了一些时间,导致最后设计的环节没完成。以后还应加强细节的设置提高课堂效率。(3)学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中加强学生的答题规范性练习。(4)数学学习方法的应用,本节课用到转化、猜想、归纳的数学方法,以后在教学中提醒学生数学方法的应用。

冀教版中学数学的教学设计冀教版初中数学教学大纲篇二

课题 三角形中位线 共 2课时

第1课时 课型 新课

教学目标 1.知识与技能:通过动手拼图、画图,亲身体验三角形中位线的概念以及与三角形中线的区别,掌握三角形中位线定理,通过三角形中位线定理的证明,渗透数学学习中的转化思想,培养学生自主探究、猜想、推理论证的能力,并能应用所学的知识解决问题

2. 过程与方法:通过问题让学生猜想三角形的中位线与第三边的关系,进而用推理论证的方法证明猜想是否正确

3.情感态度与价值观:获得在教师指导下的自主探索---发现---成功的积极情感体验,强化自主探索发现的意识,增强创新意识;感受、欣赏变化万千的几何世界之中的数学美

重点难点 1、重点:三角形的中位线定理以及定理的证明过程,应用三角形中位线定理解决问题。

2、难点:证明三角形中位线定理如何添加辅助线是本节的教学难点

教学策略 激励探索式教 学

教 学 活 动 课前、课中反思

一、创设情景

电脑出示图片,请生找出图片中的几何图形。(三角形)

请生先动手拼图,师 再电脑演示

(1)、任意两个全等三角形采用平移、旋转的方法可以拼成一个新的几何图形吗?

(2)、 任意三个全等三角形按上述呢?拼成的图形中有几个平行四边形呢?

(3)、任意四个全等三角形按上述呢?拼成的图形中有几个平行四边形呢?

二、 归纳结论

实 际问题(课件)

在某广场中央有一块三角形的绿化带,现在要把它分成形状、大小完全相同的四块,分别种上四种不同的花卉,你能帮助设计一下吗?

根据方案导出三角形中位线的 定义,并请生尝试下定义:连接三角形两边中点的线段叫做三角形的中位线。

(1) 请生动手画:一个三角形的中位线有几条?

(2) 请生回答:如下图线段af(f为中点)是中位线吗?为什么?

(3) 请生回答:三角形的中位线与中线的区别?

三、探索验证

1、 如图,△abc中,d、e分别

是ab、ac的中点,那么请同学们

观察一下,猜一猜:中位线de与bc

在位置和数量上各有什么关系?

猜想结论:学生尝试用文字语言归纳结论,并互相补充完整命题:

三角形的中位线平行于第三边,并且等于第三边的一半.

推理、论证结论

你能证明这个命题吗?

生独立书面完成,一生板演。

已知:如图,在△abc中,ad=db,ae=ec.

求证:de∥bc,de=1/2 bc

(2)猜想的四种证明方法

法一:延长de至f,使ef=de,连接fc。

法二:同法一,再连接dc、af。

法三:过点c作直线平行于ab,交de的延长线于点f。

法四:不用添加辅助线,证三角形ade与三角形abc相似即可。

通过了同学们的证明,可以知道猜想的结论是正确的.我们 把这个结论称为三角形中位线定理,(把命题改写成三角形中位线定理)

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.

几何语言:

∵ad=db,ae=ec

∴de∥bc,

de=二分之一bc

四、变式应用(课件)

如图,已知de、df、ef为△abc的中位线,

且已知ab=18、bc=16、ac=14,

(1) 你可推出哪些结论?(小组交流)

(2)如图,若取△def的三边中点顺次连接,

又可得到哪些结论?若继续取下去呢?(小组交流)

2 、如图,de、gh分别是△abc、△fbc的中位线,

(1)那么de、gh有何关系?(口答)

(2)若连接dg、eh,猜测四边形dghe的形状?(口答)

(3)当△fbc沿bc翻折1800时,上图中的四边形dghe的形状变吗?(同桌交流)

(4)若将上图中的bc去掉,结论变吗?(生动手板演)(请用多种方法解)

(5)若将上图中的任意四边形dghe的形状变为特殊的四边形,结论变吗? (小组分工合作完成)

(6)通过(5)(6)的论证你有何发现?(生交流)

反思:1)原四边形的对角线之间的关系和新得到的四边形之间的关系有什么关系?

(2)你能得出哪些一般性的结论?

1、顺次连接任意四边形各边中点所得到的四边形是平行四边形;

2、顺次连接对角线相等的四边形各边中点所得到的四边形是菱形;

3、顺次连 接对角线互相垂直的四边形各边中点所得到的四边形是矩形;

4、顺次连接对角线相等且互相垂直的四边形各边中点所得到的四边形是正方形。

反思:1、见中点,想中位线。

2、中点四边 形的形状与原四边形对角线的位置和数量有关。

当对角线既不相等也不垂直时,得到的中点四边形是平行四边形 。

当对角线相等时,得 到的中点四边形是菱形。

当对角线垂直时,得到的中点四边形是矩形。

当对角线既相等又垂直时,得到的中点四边形是正方形。

冀教版中学数学的教学设计冀教版初中数学教学大纲篇三

一、提供主动参与的空间

要鼓励每个学生动手、动口、动脑,参与数学的学习过程。学生数学知识和能力的获得是在教师的激励和指导下通过自己的内化活动来实现的,要完成真正意义上的内化,学生的学习过程必须是主动获取、主动发展的教学活动化过程。教学活动化要求在教学过程中以小组活动为基础,以学生探究为主,把互动式、多样化、个性化的学习融合在一起,以活动化的教学形式发挥学生的自主性、能动性和创造性。为此,教师必须把教材中的数学知识转化为具有探索性的数学问题,给每个学生提供思考、创造、表现及取得成功的机会,尽最大努力让课堂教学给学生带来成功。教材精心设计了一些课内与课外的实践活动,可以促进学生对数学知识的理解和应用,也可以促进学生对数学思想和数学方法的掌握。教师在教学中要根据教学内容设计实践活动,让学生走近生活、走出课本,开展丰富多彩的实践活动。

二、提倡合作学习

在学生解决数学问题时,小组合作学习是个很好的形式,一道问题放在小组中,大家经过讨论进行有选择性的商议,这时,思维活跃的孩子可以阐述自己的意见,面对不爱发言的孩子,在小范围内也留给了他表现的空间,比如给同桌讲讲,在大家的充分参与下,对数学知识的理解进行初步的统一,然后把研究的结果展示给全班同学。这时,学生对知识的思考过程进行再现,不仅有利于学生思考问题,更有利于学生掌握数学。在这样的合作学习中,学生的参与是积极的,思维是活跃的,学生的学习体验是快乐的。学生获取知识的过程比结果更重要,要留给学生思考的空间。怎么样让孩子在数学上有所发现、有所体验?这就在于他研究知识的过程是否有思考,是否经过自己本身积极的探究发现了数学结论。

在小组合作学习中留给学生思考的空间,在质疑中放手让学生学数学,这就是我们所要追求的目标。只有这样,才能让学生从课堂中去体会数学的魅力和活力。要把原来的教学重点改为探索的重点,通过学生动手、动脑、动口等活动,形成一种全员参与、全程参与的局面。同伴的合作学习,意在通过生生互动,使学生看到问题的不同侧面,对自己和他人的观点进行反思,建构起更深层次的理解。 三、把社会作为学习数学的大课堂

新的数学教学理念是“人人学有用的数学,有用的数学应当为人人所学,不同的人学不同的数学。数学教育应努力激发学生的学习情感,将数学与学生的生活、学习联系起来,学习有活力的、活生生的数学。”这一理论在新版数学教材中得到了充分的体现。如何根据教材的特点,把枯燥的数学变得有趣、生动,让学生活学、活用,从而培养学生的创新精神与实践能力呢?通过反复思考,我们就从课堂教学入手,联系生活实际讲数学,引导学生关注现实社会现象、关注社会热点问题,把生活经验数学化,把数学问题生活化。教师可创造性地融入一些生活素材,如购物、电脑知识、扑克游戏等方面的数学问题,结合教材的教学内容,创设情境,设疑引思,用学生熟悉的生活经验作为实例,引导学生利用自身已有的经验探索新知识、掌握新本领。要加强数学与生活的联系,让学生感到数学就在身边、身边处处有数学,从而增强学好数学的.信心。

四、创造性地使用教材

新教材只是提供了学生学习活动的基本线索。教学活动中,教师应根据学生实际,充分发挥主观能动性,创造性地使用教材。教师教学用书安排了一些教学案例片段及点评,并提出了一些重要的研究课题,教师可以根据实际情况设计教学,进行反思,以不断改进自己的教学观念与教学方法,做到教学相长、共同发展。教师可以根据实际情况设计开放式教学,设计好“开放性问题或问题串”,内容设计要有弹性,关注各层面的学生。第一,可设计一些有一定层次的综合性问题,培养学生灵活应用知识的能力和启动学生的思维。第二,要从学生实际出发,设计少量的、学生可接受的、开放性较强的、有利于进一步探索的问题,为不同程度的学生提供不同的探索和成功的机会,培养学生的创新意识。这样进一步激发了学生的求知欲望,使学生更乐于接触周围环境中的数学信息。学生在富有开放性的问题情境中,思路开阔了,思维的火花闪现了,他们运用原有的知识结构去探究该情境中存在的数学问题,教师引导学生在问题情境中通过观察、思考、交流,体会到了其中的数学思想。

总之,“教学设计”应在新课标的理念指导下进行,教师在平时应及时审视自己的教学,善于运用丰富多彩的课堂活动方式和教学手段,引导学生积极参与到课堂教学活动中来,使学生的数学素养和创新能力等方面得到全面提高。

相关范文推荐