通过编写初中教案,教师可以更好地理解学生的学习需要,有针对性地开展教学活动。以下的教案范文可以让我们更加全面地了解教案的结构和要点。
初中数学有理数教案(精选15篇)篇一
1.一个数,如果不是正数,必定就是负数。()。
2.正整数和负整数统称整数。()。
3.绝对值最小的有理数是0()。
4.-a是负数。()。
5.若两个数的绝对值相等,则这两个数也相等.()。
6.若两个数相等,则这两个数的绝对值也相等.()。
7.一个数的相反数是本身,则这个数一定是0。()。
8.一个数必小于它的绝对值。()。
二、填空。
1、如果盈利350元记作+350元,那么-80元表示__________________。
2、如果+7℃表示零上7℃,则零下5℃表示为;。
3、有理数中,最大的负整数是________,小于3的非负整数有____________________。
4、把下列各数填在相应的集合内,-23,0.5,-,28,0,4,,-5.2.
整数集合{……}正数集合{……}。
负分数集合{……}。
7,,-6,0,3.1415,-,-0.62,-11.
6、数轴上离表示-2的点的距离等于3个单位长度的点表示数是。
7、大于-2而小于3的.整数分别是___________________、
8、用“”连结下列各数:0,-3.4,,-3,0.5_____________________________。
9、-7的绝对值的相反数是________。-0.5的绝对值的相反数是________。
10、-(-2)的相反数是________。
11、-a的相反数是________.-a的相反数是-5,则a=。
12、在数轴上a点表示-,b点表示,则离原点较近的点是___点.
13、在数轴上距离原点为2.5的点所对应的数为_____,它们互为_____.
14、若|-x|=,则x的值是_______.如果|x-3|=0,那么x=________.
初中数学有理数教案(精选15篇)篇二
教案是教师为顺利而有效地开展 教学活动,根据教学 大纲和教科书要求及学生的实际情况,以课时或课题为单位,对 教学内容、教学 步骤、教学 方法等进行的具体设计和安排的一种实用性教学文书。以下是小编整理的关于有理数教案,希望大家认真阅读!
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的'是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定 义 规定了原点、正方向、单位长度的直线叫数轴
三要素 原 点 正方向 单位长度
应 用 数形结合
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发兴趣—手脑并用—启发诱导—反馈矫正”的教学方法。
初中数学有理数教案(精选15篇)篇三
本次说课我共分成教材分析、教学方法与手段、教学过程分析和几点思考四部分,具体内容如下:
(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下。
1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。而确定重难点是根据新课标的要求,结合学生的学情而确定的。
根据本节课的内容特点及学生的学情,我选择的教学方法是引导探索、小组合作、效果反馈的教学方法。为了提高课堂的教学容量,增加实际问题的直观性,我选用多媒体辅助教学手段。
关于学法:本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,我想这样更能有效的培养学生学习数学的能力,更好的培养学生数学地思考问题。
分析:
本课共6课时,重点是有理数乘除法法则的教学,下面我重点说有理数乘法法则的教学。整体的教学程序包括:情景创设、提出问题;引导探索、归纳结论;知识运用、加深理解;变式练习、形成能力;回顾与反思、纳入知识系统;布置作业;板书设计七部分。
设计七部分。
初中数学有理数教案(精选15篇)篇四
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
运用有理数的减法法则,熟练进行减法运算。
理解有理数减法法则。
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的'减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
师生互动法
幻灯片
1课时
1、计算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻灯片二:
如图:
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3 、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、 谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个 学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有 理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数. 例1:
例2:
练习:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
初中数学有理数教案(精选15篇)篇五
1.知识目标使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。
3.思想目标对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
正、负数的意义,
负数的意义及0的内涵。
鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
初中数学有理数教案(精选15篇)篇六
知识与能力:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算。
过程与方法:培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想。
情感态度与价值观:培养学生勤思,认真,勇于探索的精神,并联系实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析:本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,然后,结合有理数乘方的运算,讲述了乘方的'运算方法。跟这部分内容有关联的是后面“科学计数法”、“有理数的混合运算”等部分内容。
教法:引导探索法、尝试指导法,充分体现学生主体地位;。
学法:学生观察思考,自主探索,合作交流。
教学用具:电脑多媒体。
课时安排:一课时。
教学过程:教学环节、教师活动、学生活动、设计意图。
创设情境:(出示珠穆朗玛峰图片)。
引语:同学们,珠穆朗玛峰高吗?对,它的海拔有8848千米,可是将一张纸连续对折30次,会有12个珠穆朗玛峰高,你们感觉神奇吗?就让我们带着这份神奇走进数学课堂。要求学生折纸试验,对折一次变成了几层?对折2次变成了几层?连续对折30次,应该列一个怎样的算式?对折100次呢?如果把这些式子写出来,太麻烦,下面咱们一起来认识一位数学新朋友,相信他能帮你解决这个难题。
板书课题:拿出课前准备好的纸,每个学生都试验一下,思考回答问题。激情导入,激发学生的求知欲。
揭示学习目标:电脑展示学习目标、学生感悟、使学生了解本节学习内容。
1.了解有理数乘方的概念。
2.理解幂,指数,底数。
3.一个数本身可以看作这个数本身的次方。
4.(-a)n与-an一样吗?为什么?
1.把下列各式写成乘方的形式,并指出底数和指数。
(-3)×(-3)×(-3)×(-3)。
-2×2×2×2×2×2×2。
2.你自己能找到同样的例子吗?
3.计算:(–2)(–13)-26。
学生积极思考,相互交流讨论,让不同层次的学生发言。此组练习具有梯度性,可调动不同层次学生的积极性。
完成下列计算:
222425。
(-2)(-2)(-2)4(-2)5。
观察计算结,想一想:正数幂的符号与指数有何关系?负数幂的符号与指数有何关系?
学生对计算结果进行分析相互交流得出结论,把问题再次交给学生,充分发挥学生的主观能动性,培养学生归纳、总结的能力。
学生做作业。
教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学模式。整个教学过程从思考问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、思考、交流归纳的能力。不足之处:在练习的讲评上,应给学生一个较为自由的空间,让学生相互启发,相互交流。
初中数学有理数教案(精选15篇)篇七
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的`作用。
师生互动法。
幻灯片。
1课时。
1、计算(口答):
(1)1+(-2)。
(2)-10+(+3)。
(3)+10+(-3)。
2、出示幻灯片二:
如图:
教师引导观察。
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)。
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7。
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)。
观察减法是否可以转化为加法计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)。
2、再看一题:
计算:(-10)-(-3)。
问题:计算:(-10)+(+3)。
教师引导,学生观察上述两题结果,由此得到。
(-10)-(-3)=(-10)+(+3)。
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)。
3、例题讲解:
出示幻灯片三(例1和例2)。
例1计算:
(1)6-(-8)。
(2)(-2)-3。
(3)(-2.8)-(-1.7)。
(4)0-4。
(5)5+(-3)-(-2)。
(6)(-5)-(-2.4)+(-1)。
教师板书做示范,强调解题的规范性,然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2。
教师巡视指导。
师组织学生自己编题。
1、谈谈本节课你有哪些收获和体会?[。
2、本节课涉及的数学思想和数学方法是什么。
教师点评:有理数减法法则是一个转化法则,要求同学们掌握并能应用进行计算。
课堂检测(包括基础题和能力提高题)。
1、-9-(-11)。
2、3-15。
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算。
学生观察思考。
互相讨论。
学生口述解题过程。
由两个学生板演,其他学生在练习本上做。
第1小题学生抢答。
第2小题找两个学生板演。
学生回答。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用。
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础。
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力。
可以培养学生严谨的学风和良好的学习习惯,同时锻炼学生的表达能力。
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力。
板书设计:
(+10)-(+3)=(+10)+(-3)。
(-10)-(-3)=(-10)+(+3)。
减去一个数等于加上这个数的相反数.例1:
例2:。
练习:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
初中数学有理数教案(精选15篇)篇八
经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键
1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备
投影仪。
一、引入新课
五、新授
课本第28页图1.4-1,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点o.
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
初中数学有理数教案(精选15篇)篇九
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;。
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
在对有理数的`认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:
(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34…。
零:0。
负整数:如-1,-3,-5…。
正分数:如…。
负分数:如-0.3…。
由此我们有:
概括:正整数、零和负整数统称为整数;。
正分数、负分数统称为分数;。
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类。
分类一:分类二:
正整数正整数。
有理数负整数有理数零。
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;。
所有的有理数组成的数集叫做有理数集;。
所有的整数组成的数集叫做整数集;……。
例:把下列各数填入表示它所在的数值的圈里:
-18,3.1416,0,20xx,-0.142857,95%。
正整数负整数。
三、巩固训练:
p20,练习:1,2,3。
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
初中数学有理数教案(精选15篇)篇十
1、明白生活中存在着无数表示相反意义的量,能举例说明;。
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
对负数的意义的理解。
一、知识导向:
本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:
1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。
如:0,1,2,3。
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的'对立面。
如:汽车向东行驶3千米和向西行驶2千米。
温度是零上10°c和零下5°c;。
收入500元和支出237元;。
水位升高1.2米和下降0.7米;。
3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
概括:我们把这一种新数,叫做负数,如:-3,-45…。
过去学过的那些数(零除外)叫做正数,如:1,2.2…。
零既不是正数,也不是负数 。
三、阶梯训练: 。
p18练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;。
2、分别举出几个正数与负数(最少6个)。
3、p20习题2.1:1题。
初中数学有理数教案(精选15篇)篇十一
1.了解计算器的性能,并会操作和使用;
2.会用计算器求数的平方根;
重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;
难点:乘方和开方运算;
1.计算器的`使用介绍(科学计算器)
2.用计算器进行加、减、乘、除、乘方、开方运算
例1用计算器求下列各式的值.
(1)(-3.75)+(-22.5)(2)51.7(-7.2)
解(1)
(-3.75)+(-22.5)=-26.25
(2)
51.7(-7.2)=-372.24
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.
用计算器求值
1.9.23+10.22.(-2.35)×(-0.46)
答案1.37.82.1.081
初中数学有理数教案(精选15篇)篇十二
理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。
二、过程与方法。
经历对有理数进行分类的探索过程,初步感受分类讨论的思想。
三、情感态度与价值观。
通过对有理数的学习,体会到数学与现实世界的紧密联系。
教学重难点及突破。
在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。
教学准备。
用电脑制作动画体现有理数的分类过程。
教学过程。
四、课堂引入。
2.举例说明现实中具有相反意义的量。
3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。
初中数学有理数教案(精选15篇)篇十三
〖复习。
结论:所有的有限小数和无限循环小数都是分数.
〖探索1。
结论:正整数﹑零﹑负整数统称整数.
〖探索2。
下列负数哪些是负分数?
-12,,-0.33,,-12.03,.
〖探索3。
所有正整数组成正整数集合,所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:。
1,0.0708,-700,-,-3.88,0,,3.14159265,,.
正整数集合:{}负整数集合:{}。
整数集合:{}。
正分数集合:{}负分数集合:{}。
(注意:大括号内的'省略号表示什么?)。
〖探索4。
(2)分数一定是小数,小数不一定是分数.
〖探索5。
整数和分数统称有理数.
在数-100,70.8,-7,,-3.8,0,,,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.
(友情提示:,都是小数,但都不是分数,自然也都不是有理数.你答对了吗?)。
〖练习。
p10.练习。
【作业】。
p18.习题1.
【补充作业】。
1.列出竖式,把分数化为小数.(体会分数不可能是无限不循环小数.)。
2.把下列小数化为分数:3.14159,.
【备选素材】。
1.判断:。
(3)一个有理数,是分数,就一定是小数;。
(5)小数就是分数;。
(6)有理数只能分成两类.
(7)负分数不是负数.
2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类.
3.分数可以分为有限小数和________________两类.
4.满足什么条件的小数才是有理数?
5.(1)列出竖式,把分数化为小数;(体会分数不可能是无限不循环小数.)。
(2)有的小数不是分数,你能举出一个例子吗?
(3)说明为什么0.3是分数,而却不是.
6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类.
7.把下列各数填在相应的集合里:。
-|-3|,-(-0.072),,-3.88,,3.14,,.
初中数学有理数教案(精选15篇)篇十四
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;。
3,体验分类是数学上的常用处理问题的方法。
正确理解分类的标准和按照一定的标准进行分类。
正确理解有理数的概念。
设计理念。
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)。
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的'数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会。
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业。
1,必做题:教科书第18页习题1.2第1题。
2,教师自行准备。
初中数学有理数教案(精选15篇)篇十五
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法。
教学难点:会把所给的各数填入它所属于的集合里。
教学方法:问题引导法。
学习方法:自主探究法。
一、情境诱导。
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
(1)将上面的数填入下面两个集合:正整数集合{},负整数集合{},填完了吗?
(2)将上面的数填入下面两个集合:整数集合{},分数集合{},填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)。
二、自学指导。
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,。
2._______和_________统称为分数。
3.__________统称为有理数,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数:、分数:;正整数:、负整数:、正分数:、负分数:.
三、展示归纳。
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;。
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习。
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2.判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数.
(2)0.3不是有理数.
3.所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计。
正数集合:{…}负数集合:{…}。
正整数集合:{…}负分数集合:{…}。
4.下列说法正确的是()。
a.0是最小的正整数。
b.0是最小的有理数。
c.0既不是整数也不是分数。
d.0既不是正数也不是负数。
5、下列说法正确的有()。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题。